
lipitk.sourceforge.net

User Manual

Lipi Core Toolkit

 >> Core Toolkit 4.0

lipitk.sourceforge.net

Contents

User Manual ... 1

1 Lipi core toolkit: Overview .. 4

Introduction .. 4

1-1 The Lipi core toolkit ... 4

1-2 Lipi core toolkit: Salient Features ... 5

1-3 Lipi core toolkit: Architecture .. 6
1-3-1 Generic classes and utilities library ... 7
1-3-2 Generic preprocessing ... 8
1-3-3 Generic feature extractor .. 8
1-3-4 Recognition modules .. 8
1-3-5 Tools and utilities ... 9
1-3-6 Lipi engine .. 9

1-4 Summary .. 9

2 Components and usage .. 10

2-1 Before you get started .. 10

2-2 Supported platforms and environment ... 10

2-3 Disk space requirements .. 10

2-4 Software requirements ... 10

3 Installing packages .. 11

3-1 Lipi Toolkit 4.0 packages ... 11

3-2 Setting up the environment ... 11

4 Building source package .. 12

4-1 Building on Windows for VC2008.. 12
4-1-1 Setting up the Msbuild environment ... 12
4-1-2 Building the lipi-core-toolkit components ... 12

4-2 Building on Linux ... 12
4-2-1 Building the lipi-core-toolkit components ... 12

5 Shape recognizer project configuration .. 13

6 Profile configuration ... 14

7 lipiengine configuration .. 15

8 Training and testing ... 16

8-1 runshaperec tool ... 16

8-2 runwordrec tool .. 18

9 Evaluation tool .. 21

9-1 eval.pl ... 21
9-1-1 Output of the Evaluation tool .. 23

9-2 evalAdapt.pl ... 26

10 Packaging .. 28

10-1 packageRecognizer.pl ... 28

10-2 installRecognizer.pl ... 28

11 Scripts .. 30

11-1 trimlines.pl .. 30

11-2 extracthwdata.pl ... 31

lipitk.sourceforge.net

11-3 listfiles.pl .. 33

11-4 validatelistfile.pl .. 34

11-5 benchmark.pl.. 35

11-6 imagewriter.pl .. 36

12 Utilities ... 38

12-1 featurefilewriter – feature writer .. 38

12-2 Imagewriter – image writer .. 39

12-3 mdv – model data viewer ... 39
12-3-1 mdv – errors ... 40

13 Sample client applications .. 41

13-1 Introduction .. 41

13-2 Sample program shaperectst .. 41
13-2-1 Included source code, headers and binaries .. 42
13-2-2 Important data structures - shape recognition .. 43

13-3 Sample program wordrectst .. 46
13-3-1 Included source code, headers and binaries .. 47
13-3-2 Important data structures – Boxed - Field recognition ... 48

13-4 Sample program shaperectstui .. 49
13-4-1 Included source code, headers and binaries .. 49
13-4-2 Important data structures - shape recognition .. 50

14 Using Lipitk ... 52

14-1 Creating and using a shape secognizer .. 52

14-2 Creating a handwritten numeral recognizer ... 52

14-3 Integrating the shape recognizer with a sample application on same machine 55

14-4 Integrating the shape recognizer with a sample application on client machine 56

15 Creating and using a word Recognizer... 58

15-1 Creating a Boxed-Field recognizer for numeric fields .. 58

16 Appendix ... 60

16-1 Setting environment variables in Linux ... 60

16-2 Perl for Windows .. 60

16-3 Default config file nn.cfg .. 60

16-4 Default config file activedtw.cfg .. 60

16-5 Default config file neuralnet.cfg .. 60

16-6 Sample ink file for runwordrec .. 61

16-7 Sample list file for train/test.. 63

16-8 Sample list file for adapt .. 63

16-9 Configurable make settings for Linux ... 63

16-10 Module dependencies on Windows .. 64

16-11 Module dependencies on Linux .. 64

16-12 Options file for the eval tool ... 65

16-13 Feature extraction ... 65

16-14 Shape recognition ... 67

16-15 References .. 68

17 Glossary... 70

18 Acknowledgement ... 71

lipitk.sourceforge.net

1 Lipi core toolkit: Overview

Lipi core toolkit is a generic toolkit that provides handwriting recognizers for several scripts and

facilitates development of online handwriting recognizers for new scripts. It provides sample

applications to simplify integration of the resulting recognizers into real-world application contexts.

The toolkit provides robust implementations of tools, algorithms, scripts and sample code necessary to

support the activities of training and evaluation of recognizers, creating recognizers for new scripts

and their integration into pen-based applications. The toolkit is designed to be extended with new

tools and algorithms to meet the requirements of specific scripts and applications. The toolkit attempts

to satisfy the requirements of a diverse set of users, such as researchers, commercial technology

providers, do-it-yourself enthusiasts and application developers. This work has been published in [1].

 Introduction

There are large parts of the world characterized by the extensive use of paper and handwriting in all

facets of society, and poor penetration of traditional PCs and keyboards. In India the penetration of

PC is very less, as compared to the US, and most Western European countries. In this setting,

products and solutions with pen, touch and/or paper-based interfaces may play an important role in

making the benefits of Information Technology more pervasive. Handwriting recognition [HWR] is an

important technology to research on appropriate user interfaces, and to create innovative products,

solutions and services for these markets.

Unfortunately, for many of the languages in these parts of the world, such as the Indic languages, no

commercial handwriting recognition technology exists. The central problem being addressed in this

toolkit is: how can we simplify the creation of HWR technology for a new script, and how can we

simplify its integration into real-world applications? This problem has been addressed by sister

language technology communities working on speech recognition, speech synthesis, and machine

translation through the creation of toolkits comprised of tools and algorithms that can be used to

create language technology for a new language [2,3]. The issue of integration has been addressed

by the creation of standard interfaces/protocols such as MRCP for speech recognition engines [4].

However, to the best of our knowledge, no generic toolkits or standards exist for online handwriting

recognition.

1-1 The Lipi core toolkit

There are many different challenges involved in developing a generic toolkit for online handwriting

recognition. The first is that the toolkit should provide generic components to perform reasonably well

on simple as well as complex scripts, while providing the flexibility to tune, extend or even replace

them with more suitable components, to meet the challenge of a particular script or application. A

second challenge is to balance the needs of different classes of potential users.

For researchers in handwriting recognition, the toolkit should serve as a test bed to experiment with

new algorithms. For a certain class of do-it-yourself enthusiasts, it should allow the creation of

recognizers for new shapes and scripts out of the box, without requiring much knowledge of the

algorithms. For a potential vendor interested in building commercial HWR engines, it should support

the building of robust recognizers for new scripts. Finally, for the application developer, it should

allow easy integration of the recognizers built using the toolkit into any pen-based application.

lipitk.sourceforge.net

The Lipi core toolkit (“lipi” being Sanskrit for “script”) is an effort to create a generic toolkit whose

components can be used to build an online Hand Writing Recognizer for a new script, while

addressing the challenges described. The following figure (Figure 1) describes the various categories

of potential users of the toolkit.

Figure 1: Lipi core toolkit users

1-2 Lipi core toolkit: Salient Features

While toolkits such as Sphinx from Carnegie Mellon University [2] and Festival from University of

Edinburgh [3] exist for problems such as Automatic Speech Recognition and Speech Synthesis

respectively, we believe Lipi core toolkit to be one of the first to address the problem of online HWR.

Open source implementations of online gesture and character recognition such as Rosetta [5],

XStroke [6] and WayV [7] are not primarily intended for experimentation with HWR algorithms,

which is one of the (many) core goals of the toolkit.

Lipi core toolkit is designed to support a data-driven methodology for the creation of recognizers for

new scripts. While many handwriting recognition algorithms are script specific, the Lipi core toolkit is

intended to provide robust implementations of generic features and classifiers that are expected to

perform reasonably well on any given set of symbols by learning the statistical shape properties of

that set. This allows the researcher or enthusiast to build a reasonably performing recognition engine

with minimum effort.

One of the key differences between handwriting recognition and (say) speech recognition is that no

single approach or set of features/classification algorithms is known to work optimally for all scripts.

Also, the nature and quality of the input (digital ink) tends to vary widely with the capture device. The

core toolkit has been designed to accommodate different tools and algorithms specific to the device,

script and/or application.

lipitk.sourceforge.net

Core Toolkit uses open standards such as UNIPEN [8] for the representation of digital ink and

facilitating the creation of shareable linguistic resources within the community. Future versions may

use W3C InkML [9] and UPX [10] for digital ink and annotation respectively.

There is a focus on robust and efficient implementation of algorithms in Core Toolkit, in order to

facilitate the integration of recognizers created using the toolkit into real-world applications.

1-3 Lipi core toolkit: Architecture

The Lipi core toolkit is designed to support Windows and Linux platforms, hence its design and

implementation considers portability related issues. The components of the core toolkit are

implemented using C++ & STL, using ANSI functions to address portability issues. Some of the utilities

are written in Perl.

Core Toolkit 4.0 provides implementation for

 Preprocessing algorithms

 Feature extraction algorithms

 Shape recognition algorithms

 Word recognition algorithm

All the above listed modules are implemented as separate shared libraries that can be loaded at

runtime

The figure below shows the Lipi core toolkit architecture.

lipitk.sourceforge.net

Figure 2 : Lipi core toolkit: Architecture and Components

The following sections describe each module in detail.

1-3-1 Generic classes and utilities library

The generic class library includes classes to store and manipulate ink traces, such as Trace and

TraceGroup, and classes to store device and screen context. These classes are used by different

modules and tool implementations. The design of these classes reflects a tradeoff between a

conceptually intuitive and object-oriented data model, and efficient access to frequently accessed

attributes, such as X and Y channels in the case of ink traces.

The utilities library provides utility functions to read Core Toolkit configuration files, read and write

UNIPEN data files, and so on.

lipitk.sourceforge.net

1-3-2 Generic preprocessing

Lipi core toolkit exposes a standard set of interfaces for preprocessing the input ink. The default

preprocessor bundled with Core Toolkit 4.0 is

 LTKPreprocessor

LTKPreprocessor module provides implementation for commonly used shape/character preprocessing

operations such as

 moving-average smoothing

 size normalization

 equidistant resampling

The preprocessing sequence and attributes corresponding to each preprocessing operation can be

specified in the shape recognizer‟s configuration file.

1-3-3 Generic feature extractor

Lipi core toolkit exposes a standard set of interfaces for all the feature extractor modules. This allows

the user to dynamically configure and use any feature extractor at run-time. The feature extractors

bundled with Core Toolkit 4.0 are

 PointFloatShapeFeatureExtractor

 NPenShapeFeatureExtractor

 SubStrokeShapeFeatureExtractor

 L7ShapeFeatureExtractor

1-3-4 Recognition modules

1-3-4-1 Shape recognition

The shape recognition algorithms bundled with Core Toolkit 4.0 are

 Nearest-Neighbor classifier

 ActiveDTW classifier

 Neural Network classifier

1-3-4-2 Word recognition

The word recognition algorithm bundled with Core Toolkit 4.0 is

 Boxed-Field recognizer

Boxed-Field recognizer

The Boxed-Field recognizer recognizes a boxed field of characters by invoking a trained shape

recognizer on each of the boxes. It employs Dynamic Programming for decoding the N-best strings

based on the cumulative shape recognition confidences.

lipitk.sourceforge.net

Significantly, the Boxed-Field recognizer exposes a generic word recognition API, allowing the

possibility of plugging in a connected word recognizer in the future in a backward-compatible

manner.

1-3-5 Tools and utilities

Core Toolkit 4.0 4.0 provides the following tools and utilities

 listfiles.pl - creating train/test list files

 runshaperec - training and testing the shape recognizer

 runwordrec - testing the word recognizer

 eval.pl - evaluation and error analysis tool for the shape recognizer

 packageRecognizer.pl - packaging the configuration files and model files corresponding to
the trained recognizers

 installRecognizer.pl – installing the created recognizer

1-3-6 Lipi engine

The Lipi engine is the controller responsible for loading one or more shape/word recognition modules

as specified in the configuration file.

1-4 Summary

In summary, the Lipi core toolkit aims to facilitate development of online handwriting recognizers for

new scripts, and simplify integration of the resulting recognizers into real-world application contexts.

The current version of the core toolkit provides robust implementations of tools, algorithms, scripts and

sample code necessary to support the entire process starting from the creation of a recognition

engine, to its deployment and integration.

The design of the core toolkit makes it possible to integrate new tools and algorithms (such as a

different type of preprocessing, feature extraction or classification algorithm) into the toolkit.

Given the need to support the Lipi core toolkit user community (whether researchers or application

developers) across multiple operating systems and computing platforms, the core toolkit is designed to

simplify creation of versions for different platforms using a common code base.

As already indicated, there are several important research directions for the toolkit, including

inclusion of other discriminative classification algorithms, native support for emerging standards such

as W3C Ink Markup Language, data, annotation and error analysis, and even potential extensions to

Offline HWR. However, our major focus at present is to validate the design and utility of the toolkit

with different sets of users. We are also interested in collaborative projects with university research

groups using the toolkit. We hope that some of these users can contribute by trying to use the toolkit

and providing feedback, while others may contribute to the toolkit by way of new tools and

algorithms.

lipitk.sourceforge.net

2 Components and usage

2-1 Before you get started

This chapter lists the prerequisites for installing and using Lipi core toolkit.

2-2 Supported platforms and environment

lipi-toolkit 4.0 has been tested on the following platforms:

 Windows 7 32 bit and 64 bit

 Ubuntu 10.10 32 bit and 64 bit

2-3 Disk space requirements

lipi-toolkit 4.0 provides source and binary packages for Windows and Linux. Separate source

packages are provided for Windows and Linux.

The space required to extract the source package is 20 MB and binary package is 25 MB. To build

the source package after extracting you need 130 MB of free space.

2-4 Software requirements

Item and Description Windows 7 Linux

Building lipi-toolkit code Microsoft Visual C++ 2008 /
MsBuild for VC2008

G++ 4.4 or
above

Executing scripts Perl 5.1 or above and Archive::Zip Perl 5.1 or
above and
Archive::Zip

Table 1: Software requirements

NOTE: Archive::Zip perl module can be obtained from

 http://search.cpan.org/~adamk/Archive-Zip-1.30/lib/Archive/Zip.pm

http://search.cpan.org/~adamk/Archive-Zip-1.30/lib/Archive/Zip.pm

lipitk.sourceforge.net

3 Installing packages

3-1 Lipi Toolkit 4.0 packages

 Lipi Toolkit 4.0 is available in the form of binary and source packages for 32 bit and 64 bit

 Windows and Linux platforms.

Platform Package

Windows 7 Binary: lipi-toolkit4.0.0-bin-x86.exe

 lipi-toolkit4.0.0-bin-x64.exe

Source: lipi-toolkit4.0.0-src-win-x86.exe

 lipi-toolkit4.0.0-src-win-x64.exe

Linux Binary: lipi-toolkit4.0.0-linux-x86.tar.gz

 lipi-toolkit4.0.0-linux-x64.tar.gz

Source: lipi-toolkit4.0.0-src-linux.tar.gz

Table 2: lipi-toolkit packages

3-2 Setting up the environment

Core Toolkit uses an environment variable called LIPI_ROOT as reference for locating the shared and

dynamic library files, root location of data etc. On windows platform the LIPI_ROOT variable is

automatically set on installation of the core tool kit. On Linux platform this variable has to be set

manually.

For example, if the package was extracted to the directory „\opt\hp\’, LIPI_ROOT should be set

to “\opt\hp\lipi-toolkit”.

Refer to the Appendix for instructions for setting environment variables.

Hereafter, we use $LIPI_ROOT to refer to the value of this environment variable.

NOTE: In order to support multiple installations of the lipi-core-toolkit on the same system, an

option to specify LIPI_ROOT through command line has also been provided for all the
components of the toolkit. This option can also be used to specify LIPI_ROOT in a single
installation scenario, in that case the option specified through command line is given precedence
over the value specified through an environment variable.

 CAUTION: There should be no blank spaces in the path specified by LIPI_ROOT

lipitk.sourceforge.net

4 Building source package

4-1 Building on Windows for VC2008

4-1-1 Setting up the Msbuild environment

To build the binaries on Windows for VC2008, devenv must be included in system PATH variable.

This can be done by executing <visual studio 2008 install dir>\ Common7\Tools\

vsvars32.bat from the command prompt for each shell/command prompt.

4-1-2 Building the lipi-core-toolkit components

Core Toolkit 4.0 provides the build files for all modules under directory windows/vc2008 at each

directory level. The master build file is present at <lipi-toolkit

directory>/windows/vc2008/lipitk.targets. A Module can be prevented from building by removing

the module name from the DefaultTargets: list in the master project file. With these project files, user

can build source code for VC2008 package by using the MsBuild.

To build Core Toolkit 4.0, on Windows for VC2008, execute the following command from
$LIPI_ROOT/windows/vc2008

MsBuild lipitk.targets

4-2 Building on Linux

4-2-1 Building the lipi-core-toolkit components

On Linux, the makefiles for each module are available under the directory linux/ with name

Makefile.linux. The master makefile is present at <lipi-toolkit

directory>/linux/Makefile.linux. To prevent a module from building; the .PHONY tag in

the master makefile can be modified.

A global configuration file, $LIPI_ROOT/global.mk, contains common platform-specific settings

such as compiler, environment and linker etc. Refer to the Appendix, for the configurable makefile

settings.

To build Core Toolkit 4.0, on Linux, execute the following command from $LIPI_ROOT/linux

make -f Makefile.linux

http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx

lipitk.sourceforge.net

5 Shape recognizer project configuration

Project

Project is a logical name given to a group of recognizer configurations specific to a particular script

or a set of shapes to be recognized.

project.cfg

All the project directories should be present under $LIPI_ROOT/projects. For every project, the

project specific settings are stored in a configuration file named project.cfg.

For example, consider a project called demonumerals. The project root (PROJROOT) would be
$LIPI_ROOT/projects/demonumerals.

The project configuration file, project.cfg, would be present under the directory

$LIPI_ROOT/projects/numerals/config/.

Typically, a project.cfg contains the following attributes

ProjectType = SHAPEREC

NumShapes = 10

S No. Key Possible values Description

1 ProjectType  SHAPEREC

 WORDREC

Describes the type of the project.

For a shape recognition project, user must
specify the ProjectType as SHAPEREC, whereas
it should be set to WORDREC, for a word
recognition project.

2 NumShapes  Dynamic

 Any positive integer value

specifying the number of

shapes

Number of distinct shapes in the shape set to
be recognized.

The user can set the NumShapes to Dynamic, if
the number of distinct shapes to be recognized
is not known in advance. In this case, the
number of shapes is treated as a variable and
no checks are performed in the project to verify
this value.

However, if the exact number of distinct shapes
to be recognized is known in advance, the
NumShapes can be set to the exact value.

Table 3: Attributes in project.cfg

lipitk.sourceforge.net

6 Profile configuration

Profile

Profile is a set of configuration files related to a particular project. There can be one or more profiles

for the same project with a different set of tunable parameters of the algorithm used for shape

recognition.

 IMPORTANT: If profile name is not specified for a project, „default‟ profile is chosen automatically.

profile.cfg

The different profiles are stored as subdirectories under

$LIPI_ROOT/projects/<project_name>/config. Each profile directory must contain the

profile.cfg file.

The default profile is present under

$LIPI_ROOT/projects/<project_name>/config/default.

The profile.cfg, for a shape recognition project, has the following configurable attribute:

ShapeRecMethod = nn

Where, nn is the name of the shape recognition module to be used for the project-profile

combination. In addition to the profile.cfg, each profile directory must also contain the

configuration file corresponding to the shape recognition algorithm specified in profile.cfg. In

this case it would be nn.cfg. Please refer to Appendix for default configuration file for nn. Other

shape recognition modules that can be specified in profile.cfg are activedtw and neuralnet.

Please refer to Appendix for default configuration file for activedtw and neuralnet.

For a word recognition project, the profile.cfg typically has the following attributes:

WordRecognizer = boxfld

RequiredProjects = numerals (default)

S No. Key Description

1 WordRecognizer The word recognition module to be used for the project.

2 RequiredProjects The shape recognition project required by the word recognizer.

In above example, numerals(default) specifies the project (numerals)
and profile (default)

Table 4: Attributes in profile.cfg for a word recognition project

 NOTE: The recognition module name in the profile.cfg, for a shape recognition project, has

to be the same as the directory name under $LIPI_ROOT/src/reco/shaperec, e.g. nn.

lipitk.sourceforge.net

7 lipiengine configuration

lipiengine

lipiengine is the controller that loads all the modules (logger, preprocessor, featureextractor,

recognizer) required for a particular project configuration. The lipiengine also sets the logfile name

and the loglevel for the current project.

lipiengine.cfg

The configuration parameters for lipiengine can be specified through this configuration file.

lipiengine.cfg must be stored in $LIPI_ROOT/projects directory. Typically, lipiengine.cfg

contains the following attributes:

LogFile=project_lipi.log

LogLevel=DEBUG

KANNADA_CHAR = kannada_char(default)

S No. Key Possible values Description

1 LogFile Example:

project_lipi.log

Define the name of the log file.

LogFile parameter allows user to specify the
name of the log file. By default, the log file is
created in the current directory.

If the log file already exists, the log messages
are appended to the file.

If the log file is not specified, the log messages
are written to the default log file, lipi.log,
in the current directory.

2 LogLevel  DEBUG

 ERR

 INFO

 ALL

 VERBOSE

 OFF

Define the type of the Log level.

User can control the logging levels in Lipi by
specifying it as a parameter.

NOTE: Default log level is ERR if not specified
at the command line.

3 Logical name

Example:

KANNADA_CHAR =

kannada_char(default)

NUMERALS =

demonumerals(default)

Logical name is used to encode a project-

profile combination. These logical names

are used by the Sample client applications

to refer to the project-profile combinations.

If the profile is not given, default profile is

assumed.

Table 5: Attributes in lipiengine.cfg for a recognition project

lipitk.sourceforge.net

8 Training and testing

8-1 runshaperec tool

The runshaperec tool is an executable found under $LIPI_ROOT/bin, used for training and

testing the shape recognizer. (Note: If the source package was downloaded, then one has to build

the source before finding runshaperec executable. Please refer to Building package section for further

details.)

Training the shape recognizer results in the creation of a model data file under

$LIPI_ROOT/projects/<project>/config/<profile>/. In the case of testing, the tool

stores the recognition results into the specified text file, which could be used with the Evaluation tool to

analyze the recognition performance.

Usage: runshaperec

runshaperec

 -project <project name>

 -train OR –test

OR –adapt

<path of list file>

 [-h] <model data header info file name>

 [-lipiroot] <path of lipi-toolkit install

directory>

 [-profile] <profile name>

 [-logfile] <log file name>

 [-loglevel] <log level>

 [-output] <recognition results filename>

 [-confthreshold] <threshold on confidence>

 [-numchoices] <number of recognition choices>

 [-infiletype] <feature|default ink>

 [-perf]

 [-ver]

 [-help]

Command line arguments

Command line argument Argument

type
Description

-project <project name> Mandatory For training or testing, the user needs to
specify the project name.

lipitk.sourceforge.net

Example: -project numerals

NOTE: lipi-core-toolkit searches for the

directory having the name as that of the

project under $LIPI_ROOT/projects.

- train|test |adapt <path of list
file>

Mandatory Path of the input file should be passed.

The Perl script listfiles.pl can be used to
generate the list files, and validatelistfile.pl
can be used to validate the list file.

NOTE: Sample list file for train/test is

mention in Appendix. Sample list file for

adapt is mention in Appendix

-h <model data header info
filename>

Optional During training, the user can also pass an
optional argument model data header
information file name.

-lipiroot <path of lipi-toolkit
install directory>

Optional User can specify the path of lipi-toolkit install
directory using this argument. All the dynamic
libraries are retrieved from the lib directory
under the path specified.

NOTE: If lipiroot is not specified as a

command line argument, its value is retrieved

from the environment variable LIPI_ROOT.

-profile <profile name> Optional This argument allows user to specify the
profile to be used for the project.

NOTE: If the profile name is omitted, default

profile is assumed.

-loglevel <loglevel> Optional User can control the logging levels in Lipi by
specifying it as a command-line argument.

Following log levels can be used

 DEBUG

 INFO

 ERR

 ALL

 OFF

NOTE: Default log level is ERR if not specified

at the command line.

-logfile <logfile> Optional This argument allows user to specify the name
of the log file. By default, the log file is
created in the current directory. However, user
can control the location of the log file by
specifying the absolute path.

If the log file already exists, the log messages
are appended to the file.

NOTE: If the log file is not specified, the log

lipitk.sourceforge.net

messages are written to the default log file,

lipi.log, in the current directory.

-output <output filename> Optional During testing, this argument can be used to
specify the output recognition results file.

NOTE: If this argument is not specified, the

tool generates the default output file,

runshaperec.out, under the current

directory.

-numchoices <numchoices> Optional In the case of testing, the user can specify the
maximum number of recognition choices to be
returned by the recognizer.

NOTE: If this argument is not specified, all

the choices and confidence values computed

by the recognize method will be written to the

output file.

-confthreshold <confthreshold> Optional In the case of testing, the user can specify the
threshold on the confidence value. The
choices with confidence values greater than or
equal to the threshold are written to the output
file.

NOTE: If this argument is not specified, all the
choices and confidence values computed by
the recognize method will be written to the
output file.

-infiletype Optional During training, this argument can be used to
specify the type as feature or ink.

If this argument is specified as feature, then
specify –train as feature file path generated
by using featurefilewriter tool.

If this argument is specified as ink, then
specify –train as train list file.

NOTE: Default infile type is ink if not

specified at the command line.

-perf Optional To find out the total time taken for training or
testing, -perf can be used. Specifying this
argument displays the time taken in seconds,
at the end of program execution.

-ver Optional Displays the version number of the program.

-help Optional Displays usage information.

Table 6: runshaperec command line arguments

8-2 runwordrec tool

The runwordrec is an executable found under $LIPI_ROOT/bin, which is used for testing the

boxfield recognizer module. If source pacakage is downloaded, then build the source before finding

lipitk.sourceforge.net

runwordrec executable. Please refer to Building . The recognition results are written as Unicode strings

in the output file specified at the command line. Please see the Appendix for a sample ink file for

word recognition.

 NOTE: There is no training for runwordrec.

Usage: runwordrec

runwordrec

 -project <project name>

 -test <path of list file>

 [-lipiroot] <path of lipi-toolkit install

directory>

 [-profile] <profile name>

 [-logfile] <log file name>

 [-loglevel] <log level>

 [-output] <output Unicode results

filename>

 [-numchoices] <number of recognition choices>

 [-perf]

 [-ver]

 [-help]

Command line arguments

Command line argument Argument

type
Description

-project <project name> Mandatory Specifies the project name.

Example: -project numfld

NOTE: lipi-core-toolkit searches for the directory

having the name as that of the project under

$LIPI_ROOT/projects.

-test < path of list file> Mandatory Specify the path of the list-file to be used for testing
the boxed field recognizer. The list-file contains the
filenames of word samples that are annotated at
the character level and in UNIPEN format.

NOTE: The truth specified besides each file
mentioned in the list file can be a dummy string as
this is not considered in the current version of the
toolkit.

-profile <profile name> Optional This argument allows user to specify the profile to
be used for the project. If the profile name is
omitted, default profile is assumed.

-lipiroot<path of lipi-toolkit
install directory>

Optional This argument enables the user to specify the path
of lipi-toolkit root directory. All the dynamic
libraries are retrieved from the lib directory under

lipitk.sourceforge.net

the path specified.

NOTE: If lipiroot is not specified as a command

line argument, it‟s value is retrieved from the

environment variable LIPI_ROOT

-loglevel <loglevel> Optional User can control the lipi logging levels, by
specifying the log level as a command line
argument.

Following log levels can be used

 DEBUG

 INFO

 ERR

 ALL

 OFF

NOTE: Default log level is ERR if it is not specified

at the command line.

-logfile <logfilename> Optional This argument allows user to specify the name of
the log file. The log file is created in the current
directory. However, user can control the location of
the log file by specifying the absolute path.

If the log file already exists, lipi-core-toolkit log
messages are appended to the same file.

NOTE: If log file is not specified, the log messages

are written to the default log file: lipi.log in the

current directory.

-output <output filename> Optional During testing, this argument can be used to
specify the location of the output UNICODE results
file.

NOTE: If this argument is not specified, the tool

generates the default output file,

runwordrec.out, under the current directory.

-numchoices <numchoices> Optional In case of testing, the user can specify the number
of recognition choices to be displayed for each
recognition result.

NOTE: If this argument is not specified, all the

choices and confidence values computed by the

recognize method will be written to the output file.

-perf Optional To find out the time taken for training or testing, -
perf can be used. Specifying this argument
displays the time taken in seconds, at the end of
program execution.

-ver Optional Displays the version number of the program.

-help Optional Displays the usage of this tool.

Table 7: runwordrec command line arguments

lipitk.sourceforge.net

9 Evaluation tool

The evaluation tool facilitates the evaluation and benchmarking of different shape recognizers.

9-1 eval.pl

Responsibilities

The Perl script, eval.pl, accepts the output of the runshaperec utility (output file generated from

testing the shape recognizer), and generates a report consisting of recognition accuracy and

confusion matrix of the shape recognizer. It provides an easy HTML interface to interpret the

recognition results.

Usage: eval.pl

perl eval.pl

 -f <options file >

Or

perl eval.pl

 -input <input recognition results

file>

 [-output] <output file>

 [-lipiroot] <path of lipi-toolkit

install directory>

 [-generateHTML] <1 to enable HTML output; 0

to suppress HTML output

(default 1) >

 [-topError] <# top confusions required

(default 5)>

 [-imgExt] <image extension .bmp .png

etc. include the "."

(default .bmp) >

 [-accuracy] <# top N accracies required

(default 1)>

 [-images] <# images displayed in a row

(default 10)>

 [-ver]

 [-help]

Command line arguments

Command line
argument

Argument type Description

lipitk.sourceforge.net

-input Mandatory The result file generated by testing the shape recognizer
using the runshaperec tool.

-output Optional The output file to which the accuracy should be written.

NOTE: If no output file is specified, the top accuracies

are displayed on the screen.

-lipiroot Optional This argument allows the user to specify the path of lipi-
toolkit install directory.

NOTE: If lipiroot is not specified as a command line

argument, it‟s value is retrieved from the environment

variable LIPI_ROOT

-generateHTML Optional This argument allows the user to specify if HTML is
required as output. To generate result in HTML, provide
argument as 1 else provide 0

NOTE: The default value for the argument is 1, where

HTML will be generated.

-topError Optional This argument allows the user to specify the number of
top errors to be displayed in the performance analysis
file.

NOTE: The default value for number of top errors is

five.

-imgExt Optional This argument allows the user to specify the extension of
the image files generated by imagewriter.pl

NOTE: Please include a "." [DOT] also while specifying

the image extension. Example: .png, .bmp, etc. By

default the image extension is ".bmp".

-accuracy Optional This argument can be used to specify the number of top
accuracies to be displayed in performance analysis
table.

NOTE: The default value for this argument is one. The
value of this parameter should be less than or equal to
the number of choices in the result file.

-images Optional Number of images to be displayed, per row.

NOTE: The default value is 10.

-ver Optional Displays version information.

-help Optional Displays usage information.

Table 8: eval.pl Command line arguments

All these command line arguments can be written into a file, which can be passed as an argument to

the evaluation script eval.pl using the –f option. The format of the file containing the list of options

is shown below

Option1 = value

Option2 = value

In the options file, input and output are similar to the command line arguments -input and –output. The

command line arguments –generateHTML, -topError, -imgExt, -accuracy and -images can be specified

in the options file using lipiroot, topError, performance_choices, number_images_row,

image_extension respectively. See the Appendix for more details on the options file for eval tool.

lipitk.sourceforge.net

9-1-1 Output of the Evaluation tool

The evaluation tool creates as output the following files and directories

 resultviewer.html

 confusion_matrix.html

 performance.html

 HTML directory

The following section describes these in detail.

resultviewer.html

The resultviewer.html is an HTML interface provided to view the recognition results. The

resultviewer.html is found under $LIPI_ROOT/ scripts. A screenshot of the

resultviewer.html is shown below.

Figure 3: resultviewer.html

1. Enter the location of confusion_matrix.html , example - $LIPI_ROOT/bin

lipitk.sourceforge.net

2. Enter the root directory of the ink samples, example -
$LIPI_ROOT/projects/numerals/data/raw

3. Enter the root directory of the images generated by imagewriter.pl, example -
$LIPI_ROOT/projects/numerals/data/out

4. To display the confusion matrix, click on the view button.

confusion_matrix.html

The confusion matrix is a graphical representation of the recognition results. The first column of the

confusion matrix represents the true classes and the first row the recognized classes. Each element of

the confusion matrix in the ith row and jth column represents the number of samples of the class

corresponding to row i confused to the class corresponding to the row j. Placing the mouse pointer on

an element of the confusion matrix, specimen samples of the original and recognized class are

displayed on either sides of the matrix. Click on a cell (i,j) of the confusion matrix to display all the

samples of the ith class confused with the jth class as shown in Figure 6.

Figure 4 : confusion_matrix.html

For example the value 1 in the third row and ninth column of the confusion matrix represents the

number of samples of class one confused to class seven.

lipitk.sourceforge.net

performance.html

Clicking on the performance analysis button displays the performance analysis window,

performance.html. The figure below shows the screenshot of the performance analysis file. The

first table in the performance analysis window shows the top N choice accuracy, and the second

table displays the top errors.

Figure 5 : performance.html

lipitk.sourceforge.net

Figure 6 : Misclassified sample of class 1

Clicking on any sample image as shown above displays the ink file corresponding to that image.

HTML directory

The HTML directory, created in the same directory as the input file to the evaluation tool, contains a

subdirectory for every class in the input file. The lipi-core-toolkit cascaded style sheet file,

lipitk.css, available under $LIPI_ROOT/scripts directory, is also copied to this directory.

 NOTE: All the HTML files use the lipi-core-toolkit cascaded style sheet, lipitk.css. To change

the look and feel of the HTML files, modify this css file. To create the images refer to the usage of
imagewriter.pl utility.

9-2 evalAdapt.pl

Responsibilities

This script can be used to evaluate the performance of the adaptation algorithm. To compute the

performance, the script computes the accuracy on bins of samples in the order in which they are

presented to the recognizer. The Perl script, evalAdapt.pl, accepts the output of the runshaperec

utility (output file generated from running the shape recognizer in adaptation mode), and generates a

lipitk.sourceforge.net

text file consisting of recognition accuracies computed on the bins specified through binsize and

overlap options. The final accuracy in the output text file is the accuracy computed on the final set of

samples specified through final bin option.

Usage: evalAdapt.pl

perl evalAdapt.pl

 -input <input recognition results

file>

 -outdir <output directory>

 -resultfile <output text file to which

the computed accuracies will

be written>

 -binsize <the number of samples per

bin on which accuracy has to

be computed>

 -overlap <overlap value for each bin>

 -finalbin <the size of the final bin

on which final accuracy has

to be calculated>

 [-lipiroot] <path of lipi-toolkit

install directory>

 [-ver]

Command line arguments

Command line
argument

Argument type Description

-input Mandatory The result file generated by testing the shape
recognizer using the runshaperec tool.

-outdir Mandatory The output directory to which the accuracy
should be written.

-resultfile Mandatory Output text file to which the computed
accuracies will be written.

-binsize Mandatory The input recognition results file is split into bins
of this size for computing the accuracy and
accuracy is calculated on each of these bins.

-overlap Mandatory While splitting the file into bins, the bins are
created with this overlap value.

-finalbin Mandatory The size of the final bin on which final
accuracy has to be calculated.

-lipiroot Optional This argument allows the user to specify the
path of lipi-toolkit install directory.

NOTE: If lipiroot is not specified as a

command line argument, it‟s value is retrieved

from the environment variable LIPI_ROOT

-ver Optional Displays version information.

Table 9: evalAdapt.pl Command line arguments

lipitk.sourceforge.net

10 Packaging

10-1 packageRecognizer.pl

Responsibilities This script can be used to package/zip shape recognition projects created by lipi

designer or by using the runshaperec tool.

Usage:
perl packageRecognizer.pl

 -project <project name, to be

packaged>

 -logicalname <logical name of the project

to be packaged>

 [-lipiroot] <toolkit install directory>

 [-ver] <version of the toolkit>

 [-help] <display all parameters

supported>

Command line arguments

Command line argument Argument type Description

-project Mandatory Project name.

-logicalname Mandatory Logical name of the project

-lipiroot Optional Lipi toolkit install directory

-ver Optional Displays version information

-help Optional Displays usage information.

Table 10: packageRecognizer.pl command line arguments

10-2 installRecognizer.pl

Responsibilities This script can be used to install shape recognizers packaged using

packageRecognizer.pl

Packaged shape recognizers will be installed to the projects directory and lipiengine.cfg will be

updated with the details of the installed shape recognizer.
Usage:
perl installRecognizer.pl

-file <zip file

name>

 -[lipiroot] <toolkit install directory>

lipitk.sourceforge.net

 -[ver] <version of the toolkit>

 -[help] <display all parameters

supported>

Command line arguments

Command line argument Argument type Description

-file Mandatory Zip file name

-lipiroot Optional Lipi toolkit install directory

-ver Optional Displays version information

-help Optional Displays usage information.

Table 11:installRecognizer.pl command line arguments

lipitk.sourceforge.net

11 Scripts

Core Toolkit 4.0 package comes with various scripts. All the scripts are written in Perl and are present

under $LIPI_ROOT/scripts. This section describes the various utility scripts provided in the lipi-

core-toolkit package.

11-1 trimlines.pl

Responsibilities

The script removes the extraneous characters (^m character at the end of every line), incurred by

transferring data files across platforms. The tool traverses recursively through the dataset directory, to

look for all *.txt files and removes all the extraneous characters.

Usage: trimlines.pl

perl trimlines.pl

 -indir <root of input directory>

 [-ver]

 [-help]

Command line arguments

Command line argument Argument type Description

-indir Mandatory The root directory of the data set.

-ver Optional Displays version information

-help Optional Displays usage information.

Table 12: trimlines.pl command line arguments

lipitk.sourceforge.net

11-2 extracthwdata.pl

Responsibilities

The script extracts handwriting data of specified hierarchy from a set of UNIPEN files. It splits a

UNIPEN file into different files, each containing one element of the specified hierarchy.

Usage: extracthwdata.pl

perl extracthwdata.pl

 –indir <Dataset root directory>

 -outdir <Output directory of extracted

data>

 -hlevel <Hierarchy>

 [-ver]

 [-help]

Command line arguments

Command line argument Argument type Description

-indir Mandatory The root directory of the data set.

-outdir Mandatory The new path where the split files will be
created.

-hlevel Mandatory The UNIPEN hierarchy level, e.g.
CHARACTER.

-ver Optional Displays version information.

-help Optional Displays help information.

Table 13: extracthwdata.pl Command line arguments

Example:

When the script is invoked with hierarchy as CHARACTER, three files and_i1sym_a.txt,

and_i1sym_n.txt, and_i1sym_d.txt are extracted from the following file and.txt. The extracted file

name comprises the original file name, the symbol id and the instance number of the symbol in the

original file.

lipitk.sourceforge.net

.VERSION 1.0

.DATA_SOURCE hpl

...

.COORD X Y T

.SEGMENT WORD 0,3,2,4-5 ok “and”

.SEGMENT CHARACTER 0,3,2 ok “a”

.SEGMENT CHARACTER 4 ok “n”

.SEGMENT CHARACTER 5 ok “d”

.PEN_DOWN

783 707 0

...

637 1178 0

.PEN_UP

.PEN_DOWN

1023 1047 0

...

1132 1028 0

.PEN_UP

.PEN_DOWN

1408 751 0

...

1399 1150 0

.PEN_UP

.PEN_DOWN

962 950 0

...

1417 950 0

.PEN_UP

.PEN_DOWN

850 654 0

...

2151 907 0

.PEN_UP

.PEN_DOWN

2154 717 0

...

2606 1075 0

.PEN_UP

File-1: (and_i1sym_a.txt) File-2: (and_i1sym_n.txt) File-3: (and_i1sym_d.txt)

.VERSION 1.0

.DATA_SOURCE hpl

...

.COORD X Y T

.VERSION 1.0

.DATA_SOURCE hpl

...

.COORD X Y T

.VERSION 1.0

.DATA_SOURCE hpl

...

.COORD X Y T

lipitk.sourceforge.net

.SEGMENT CHARACTER 0-2

ok “1”

.PEN_DOWN

783 707 0

...

637 1178 0

.PEN_DOWN

962 950 0

...

1417 950 0

.PEN_UP

.PEN_DOWN

1408 751 0

...

1399 1150 0

.PEN_UP

.SEGMENT CHARACTER 1 ok

“2”

.PEN_DOWN

850 654 0

...

2151 907 0

.PEN_UP

.SEGMENT CHARACTER 1 ok

“3”

.PEN_DOWN

2154 717 0

...

2606 1075 0

.PEN_UP

Table 14: Output file generated after executing extracthwdata.pl

11-3 listfiles.pl

Responsibilities

The listfiles.pl script generates the list file for training and testing the shape and word

recognizer modules. The input to the script is a map file containing regular expressions for each

class. The format of the map file is as follows:

<Shape ID>SPACE<regular expression corresponding to the data file path relative to the data root

directory>

where, the first column denotes the shape ID and the second column denotes a regular expression,

which on expansion, gives all the data files corresponding to the shape ID.

Example:

0 usr[0-5]/000000t*.txt

1 usr[0-5]/000001t*.txt

…

…

9 usr[0-5]/000009t*.txt

 IMPORTANT: The shape IDs should be listed sequentially in ascending order.

lipitk.sourceforge.net

Usage: listfiles.pl

perl listfiles.pl

 –indir <Dataset root directory>

 -output <Output list file>

 -config < The map file containing
the regular expressions>

 [-adapt] <randomize the input file

for the evaluation of

adaptation>

 [-prototype] <numer of prototypes for

adaptation. To be used with

–adapt>

 [-ver | v]

 [-help]

Command line arguments

Command line argument Argument type Description

-indir Mandatory The root directory of the data set.

-output Mandatory Name of the output list file.

NOTE: By default, the output list file is

created in the current directory. However, user

can provide absolute or relative path to

control the location of the output file.

-config Mandatory The path of the map file.

-adapt Optional To randomize the input file for the evaluation
of adaptation

-prototypes Optional Number of prototypes that will be added to
the model during adaptation. To be used with
–adapt

-ver | -v Optional Displays version information.

-help Optional Displays help information.

Table 15: listfiles.pl Command line arguments

11-4 validatelistfile.pl

Responsibilities

Training the shape recognizer using a list file requires the shape ID to be listed in an ascending order

of shape ids. This script enables the user to validate his/her list file. Given the path of input list file,

this script generates a new list file with the shape IDs listed in ascending order.

lipitk.sourceforge.net

The script creates a new list file in the same directory as the input list file, with “_new” added as suffix

to the name.

Example: Executing the following command

perl validatelistfile.pl –input listfile.txt

results in the creation of file listfile_new.txt, with shape IDs listed in ascending order.

Usage: validatelistfile.pl

perl validatelistfile.pl

 -input <input list file path>

 [-ver|v]

 [-help]

Command line arguments

Command line argument Argument type Description

-input Mandatory Takes the path of the list file to be validated

-ver|v Optional Displays version of the script.

-help Optional Displays usage information.

Table 16: validatelistfile.pl Command line arguments

11-5 benchmark.pl

Responsibilities

This script performs training, testing and evaluation of a shape recognizer for the project and profile

specified as command line arguments. Testing the shape recognizer, results in the creation of an

output file, runshaperec.out. This is used as an input for evaluating the recognition accuracy.

Usage: benchmark.pl

perl benchmark.pl

 -project <project name>

 -train <path of training list

file>

 -test <path of testing list

file>

 [-logfile] <log file name>

 [-profile] <profile name>

 [-lipiroot] <path of lipi-toolkit

install directory>

lipitk.sourceforge.net

 [-ver|v]

 [-help]

Command line arguments

Command line argument Argument type Description

-project Mandatory For benchmarking, the user needs to pass the
project name.

Example: -project numerals

NOTE: lipi-core-toolkit searches for the directory

having the name as that of the project under

$LIPI_ROOT/projects..

-train Mandatory Takes the path of the training list file.

Refer to listfiles.pl, for the format of the list file.

-test Mandatory Takes the path of the list file for testing.

Refer to listfiles.pl, for the format of the list file.

-logfile Optional This argument allows the user to specify the log
file name for the lipi-core-toolkit log messages.

NOTE: By default, the log messages are written

to lipi.log in the current directory.

-profile Optional This argument allows the user to specify the
profile to be used for the project.

NOTE: If the profile name is omitted, „default‟

profile is assumed.

-lipiroot Optional Path of lipi-toolkit install directory.

NOTE: If lipiroot is not specified as a command

line argument, it‟s value is retrieved from the

environment variable LIPI_ROOT

-ver|v Optional Displays version of the script.

-help Optional Displays usage information.

Table 17: benchmark.pl Command line arguments

11-6 imagewriter.pl

Responsibilities

This script generates the images of the UNIPEN ink files. Make sure that the executable,

imgwriter.exe exists in the $LIPI_ROOT/bin directory, before invoking the script.

Usage: imagewriter.pl

perl imagewriter.pl

 -indir <root of the dataset>

 -outdir <output directory>

lipitk.sourceforge.net

 [-infileext] <extension of the ink

files>

 [-imagesize] <Size of the output image

in Pixels>

 [-lipiroot] <path of lipi-toolkit root

directory>

 [-ver | v]

 [-help]

Command line arguments

Command line argument Argument type Description

-indir Mandatory The root directory of the data set.

-outdir Mandatory The output directory to store the image files.

-infileext Optional The extension of the input data file. The script
creates images only for the files with the same
extension as specified.

NOTE: If no file extension is specified, the

default file extension “.txt” is assumed.

-imagesize Optional The size of image in pixels.

NOTE: If image size is not specified, the default

size of 100 pixels is assumed.

-lipiroot Optional Path of lipi-toolkit root directory.

NOTE: If lipiroot is not specified as a command

line argument, it‟s value is retrieved from the

environment variable LIPI_ROOT

-ver Optional Displays version information

-help Optional Displays usage information.

Table 18: imagewriter.pl Command line arguments

lipitk.sourceforge.net

12 Utilities

12-1 featurefilewriter – feature writer

The feature writer application, featurefilewriter, available under $LIPI_ROOT/bin, is use to

generate file that features extracted for UNIPEN ink file. To build the executable, please follow the

instructions given below.

Usage: featurefilewriter

featurefilewriter

 -cfg <cfg file path>

 -list <list filename>

 -output <output filename>

 [-lipiroot] <path of lipi-toolkit root directory>

 [-loglevel] <log level: Debug|Error|info|all>

 [-ver]

Command line arguments

Command line argument Argument type Description

-cfg Mandatory Takes the profile.cfg file path.

-list Mandatory Takes the path of the list file.

Refer to listfiles.pl, for the format of the list file.

-output Mandatory Path to generate file after the features are
extracted.

-lipiroot Optional Path of lipi-toolkit install directory.

NOTE: If lipiroot is not specified as a command

line argument, it‟s value is retrieved from the

environment variable LIPI_ROOT

-loglevel Optional This argument allows the user to specify the log
level {Debug|Error|info|all}.

-ver Optional Displays the version of the tool

Table 19: featurefile Command line arguments

Description

The featurefilewriter tool reads the profile.cfg and list file as input, extract the features from the each

UNIPEN ink file mention in the list file and generate a feature file specified as an ouput command-line

argument.

lipitk.sourceforge.net

12-2 Imagewriter – image writer

The image writer application, imgwriter, available under $LIPI_ROOT/bin, is invoked by the

Perl script imagewrite.pl to generate the images for UNIPEN ink file. To build the executable,

please follow the instructions given below.

12-3 mdv – model data viewer

The mdv tool, an executable residing under $LIPI_ROOT/bin directory, accepts a model data file

as an input and displays the model data header information.

Usage: mdv

mdv

 -input <path of model data file>

 [-projname]

 [-numshapes]

 [-recname]

 [-recver]

 [-checksum]

 [-createtime]

 [-modtime]

 [-headerlen]

 [-dataoffset]

 [-headerver]

 [-byteorder]

 [-platform]

 [-preproc]

 [-ver]

 [-all]

 [-help]

Command line arguments

Command line argument Argument type Description

-input Mandatory Takes the path of the input model data file.

-projname Optional Displays the name of the project.

-numshapes Optional Displays the number of shapes.

-recname Optional Displays the name of the shape recognizer.

lipitk.sourceforge.net

-recver Optional Displays the version the shape recognizer.

-checksum Optional Displays the checksum of the file.

-createtime Optional Displays the date of creation of the input file.

-modtime Optional Displays the date of last modification of the input
file.

-headerlen Optional Displays the length of the model data header.

-dataoffset Optional Displays the byte offset value of the start of data
in file.

-headerver Optional Displays the version of model data header.

-byteorder Optional Displays the byte order

 Little endian or

 Big endian

-platform Optional Displays the platform, on which the input file is
created.

-preproc Optional Displays the preproc fields

-ver Optional Displays the version of the tool

-all Optional Displays all the fields.

-help Optional Displays the tool usage.

Table 20: mdv Command line arguments

Description

The tool reads the input model data file, validates the checksum for the file and displays the header

information. The output can be customized using the command-line arguments.

12-3-1 mdv – errors

Error Scenario Error code Error message

Input file not found EMODEL_DATA_FILE_OPEN Unable to open model data
file.

Failed to open input file for
reading

EMODEL_DATA_FILE_OPEN Unable to open model data
file.

The input file does not
contain header.

EMODEL_DATA_FILE_FORMAT Incompatible model data file.
The header is not in the
desired format.

The header in the input file
is corrupt

EMODEL_DATA_FILE_CORRUPT Model data file is corrupted.

Table 21: mdv errors

lipitk.sourceforge.net

13 Sample client applications

13-1 Introduction

The sample programs demonstrate how to use APIs exposed by recognition components and modules

of Core Toolkit with client applications which require shape or word recognition.

Core Toolkit 4.0 provides two sample applications for windows and linux

 shaperectst: sample client application for shape recognizers.

 wordrectst: sample client application for word recognizers.

Apart from these, it provides a sample UI application for windows, where user can load existing
bundled shape recognizers and test.

 shaperectstui: sample ui client application for shape recognizers (Windows only).

The following sections cover all the technical details for the sample client applications provided by

Lipitk.

13-2 Sample program shaperectst

The sample program shaperectst is provided as an example of how the character recognizers can

be invoked from an application program. It illustrates the steps for instantiating the recognizers using

their logical names, passing digital ink to them and obtaining recognition results. The major steps in

the program are illustrated below:

lipitk.sourceforge.net

Verify the

command line

arguments

Fetch the value of

$LIPI_ROOT

environment

variable

Load the module LIPI_ROOT/

lib/lipiengine.dll or so

Create an instance of LipiEngine

module.

Set LIPI_ROOT for the LipiEngine

module instance

Initialize lipiengine module

Invoke createShapeRecognizer to

create the shape recognizer instance

Invoke “loadModelData”

Set the device

information using

“setDeviceContext

”

Store the screen

context (top, left,

bottom, right)

reserve memory

for results

invoke “recognize”

function

Display results

delete the

recognizer

instance and

unload the

lipiengine module

13-2-1 Included source code, headers and binaries

13-2-1-1 Source directory

File description Location

Sample programs for shape recognizer $LIPI_ROOT/src/apps/samples/shaperectst

Common header files $LIPI_ROOT/src/include

Common libraries for linking $LIPI_ROOT/src/lib

Table 22: shaperectst file locations

lipitk.sourceforge.net

13-2-1-2 Required libraries

Library
($LIPI_ROOT/src/lib)

Remarks

common.lib/common.a Common data structures and manipulating
functions

shapereccommon.lib/shapereccommon.a Shape recognition specific data structures

featureextractorcommon.lib/featureextractorcommon.a Feature extractor specific data structures

utils.lib/utils.a Utilities to read/write UNIPEN ink, Logger, etc.

Table 23: shaperectst - static libraries required

Library
($LIPI_ROOT/lib)

Remarks

preproc.dll/libpreproc.so Preprocessing functions

pointfloat.dll/libpointfloat.so,

l7.dll/libl7.so, npen.dl/libnpen.so,
substroke.dll/libsubstroke.so

Functions for feature extraction

lipiengine.dll/liblipiengine.so Controller class for loading and creating shape recognizers

nn.dll/libnn.so,
adaptivedtw.dll/libadaptivedtw.so,
neuralnet.dll/libneuralnet.so

Nearest neighbor/adaptivedtw/neuralnet shape recognizer

Table 24: shaperectst - shared libraries required

13-2-1-3 Required header files

Header file
($LIPI_ROOT/src/include)

Remarks

LTKInkFileReader.h To read ink files in UNIPEN format

LTKLipiEngineInterface.h Defines the interface for LipiEngine module

LTKMacros.h Defines global macros which are used across Lipitk

LTKInc.h Generic include file which includes all standard include headers

LTKTypes.h Defines all the lipi-core-toolkit specific common datatypes

LTKTrace.h Defines LTKTrace datatype which is used to store ink info

Table 25: shaperectst - header files required

13-2-2 Important data structures - shape recognition

This section describes some of the main data structures from common.lib and their usage in the

shaperectst code

Screen context (LTKScreenContext): Stores the coordinates of the writing area.

Member Functions Used

lipitk.sourceforge.net

Member function
name

Description

setBboxLeft() Sets bottom left x co-ordinate of the writing area

setBboxBottom() Sets bottom left y co-ordinate of the writing area

setBboxRight() Sets top right x co-ordinate of the writing area

setBboxTop() Sets top right y co-ordinate of the writing area

Table 26: LTKScreenContext member functions used: shaperectst

Device context (LTKDeviceContext): Stores information about the device used for input.

Member functions used

Member function name Description

setSamplingRate () Stores the sampling rate of the device.

setXDPI () Stores the horizontal direction resolution of the device

setYDPI () Stores the vertical direction resolution of the device

setLatency () Stores the interval between the time of actual input to that of its
registration

setUniformSampling() Sets the flag to indicate if the sampling is uniform

Table 27: LTKDeviceContext member functions used: shaperectst

Ink data structure (LTKTraceGroup): Stores the digital ink

Results data structure (LTKShapeRecoResult): Stores recognition result and returns it back to the

application program

Member functions used

Member function name Description

getShapeId () Returns the shape id

getConfidence () Returns the confidence corresponding to the shape id

Table 28: LTKShaperecResult member functions used: shaperectst

Usage: shaperectst

shaperectst

 <logical project name>

 <ink file to recognize>

Command line arguments

Command line argument Argument

type
Description

lipitk.sourceforge.net

<logical project name> Mandatory The user needs to pass the logical project
name as specified in the lipiengine.cfg.

Example: SHAPEREC_NUMERALS, for
numerals project

< ink file to recognize> Mandatory Path of the UNIPEN ink file to be recognized
should be passed.

Table 29: Command line arguments: shaperectst

lipitk.sourceforge.net

13-3 Sample program wordrectst

Verify the

command line

arguments

Fetch the value of

LIPITK_ROOT

environment

variable

Load the module LIPI_ROOT/

lib/lipiengine.dll or so

Create an instance of LipiEngine

module.

Set LIPI_ROOT for the LipiEngine

module instance

Initialize lipiengine module

Invoke createWordRecognizer to

create the word recognizer instance

Invoke createRecognitionContext() and

get the LTKRecognitionContext

instance

1. Set the word-recognizer instance onto

LTKRecognitionContext object.

2. Set the device context onto

LTKRecognitionContext object

3. Set the screen context onto

LTKRecognitionContext object

reserve memory

for results

invoke “recognize”

function on

LTKRecognitionCo

ntext object

Display results

delete the

recognizer

instance and

unload the

lipiengine module

Fill the

LTKRecognitionCo

ntext object with

the ink for

recognition

lipitk.sourceforge.net

13-3-1 Included source code, headers and binaries

13-3-1-1 Source directory
File description Location

Sample program for boxedfield recognizer $LIPI_ROOT/src/apps/samples/wordrectst

Common header files $LIPI_ROOT/src/include

Common libraries for linking $LIPI_ROOT/src/lib

Table 30: File locations: wordrectst

13-3-1-2 Required libraries

Library
($LIPI_ROOT/src/lib)

Remarks

common.lib Common data structures and manipulating functions

shapereccommon.lib Shape recognition specific data structures

featureextractorcommon.lib Feature extractor specific data structures

wordreccommon.lib Data structures specific to any word recognizer

utils.lib Utilities to read/write UNIPEN ink, Logger, etc.

Table 31: Static libraries required: wordrectst

Library
($LIPI_ROOT/lib)

Remarks

boxfld.dll/libboxfld.so Boxedfield word recognizer

preproc.dll/libpreproc.so Preprocessing functions

pointfloat.dll/libpointfloat.so,
l7.dll/libl7.so, npen.dl/libnpen.so,
substroke.dll/libsubstroke.so

Functions for feature extraction

lipiengine.dll/liblipiengine.so Controller class for loading and creating shape and word
recognizers

nn.dll/libnn.so,
adaptivedtw.dll/libadaptivedtw.so,
neuralnet.dll/libneuralnet.so

Nearest neighbor/adaptivedtw/neuralnet shape recognizer

Table 32: Shared libraries required: wordrectst

13-3-1-3 Required header files

Header file
($LIPI_ROOT/src/include)

Remarks

LTKInkFileReader.h To read ink files in UNIPEN format

LTKLipiEngineInterface.h Defines the interface for LipiEngine module

LTKMacros.h Defines global macros which are used across Lipitk

LTKInc.h Generic include file which includes all standard include headers

LTKTypes.h Defines all the lipi-core-toolkit specific common datatypes

LTKTrace.h Defines LTKTrace datatype which is used to store ink info

Table 33: Header files required: wordrectst

lipitk.sourceforge.net

13-3-2 Important data structures – Boxed - Field

recognition

Recognition context (LTKRecognitionContext): Specifies UI parameters, application specific parameters

and recognition related configurations.

Member functions used

Member function
name

Description

beginRecoUnit () Marks the beginning of a recognition unit of Ink

addTraceTroup() Adds a vector of trace group for recognition in
the recognition context.

endRecoUnit() Marks the end of a recognition unit of Ink

setWordRecoEngine() Sets the word recognizer to be used.

Table 34: Some of the member functions of LTKRecognitionContext

Usage: wordrectst

wordrectst

 <logical project name>

 < list file to recognize>

 < outputfile>

Command line arguments

Command line argument Argument

type
Description

<logical project name> Mandatory The user needs to pass the logical project
name as specified in the lipiengine.cfg.

Example:NUMERALS_FLD, for numerals
project

< list file to recognize> Mandatory Path of the list file to be recognized should be
passed.

< outputfile> Mandatory This argument is used to specify the output file
for the wordrectst.

Table 35: Command line arguments: wordrectst

lipitk.sourceforge.net

13-4 Sample program shaperectstui

The sample program shaperectstui is provided as an example of how the character recognizers

can be invoked from an application program. It illustrates the steps for instantiating the recognizers

using their logical names, passing digital traceGroup to them and obtaining recognition results.

13-4-1 Included source code, headers and binaries

13-4-1-1 Source directory

File description Location

Sample programs for shape recognizer $LIPI_ROOT/src/apps/samples/shaperectstui

Common header files $LIPI_ROOT/src/include

Common libraries for linking $LIPI_ROOT/src/lib

Table 44: shaperectstui file locations

13-4-1-2 Required libraries

Library
($LIPI_ROOT/src/lib)

Remarks

common.lib Common data structures and manipulating functions

shapereccommon.lib Shape recognition specific data structures

featureextractorcommon.lib Feature extractor specific data structures

utils.lib Utilities to read/write UNIPEN ink, Logger, etc.

Table 44: shaperectstui - static libraries required

Library
($LIPI_ROOT/lib)

Remarks

preproc.dll Preprocessing functions

pointfloat.dll Functions for feature extraction

lipiengine.dll Controller class for loading and creating shape recognizers

nn.dll Nearest neighbor shape recognizer

Table 36: shaperectstui - shared libraries required

13-4-1-3 Required header files

Header file
($LIPI_ROOT/src/include)

Remarks

LTKInkFileReader.h To read ink files in UNIPEN format

LTKLipiEngineInterface.h Defines the interface for LipiEngine module

LTKMacros.h Defines global macros which are used across lipitk

lipitk.sourceforge.net

LTKInc.h Generic include file which includes all standard include headers

LTKTypes.h Defines all the lipi-core-toolkit specific common datatypes

LTKTrace.h Defines LTKTrace datatype which is used to store ink info

Table 46: shaperectstui - header files required

13-4-2 Important data structures - shape recognition

This section describes some of the main data structures from common.lib and their usage in the

shaperectstui code

Screen context (LTKScreenContext): Stores the coordinates of the writing area.

Member Functions Used

Member function
name

Description

setBboxLeft() Sets bottom left x co-ordinate of the writing area

setBboxBottom() Sets bottom left y co-ordinate of the writing area

setBboxRight() Sets top right x co-ordinate of the writing area

setBboxTop() Sets top right y co-ordinate of the writing area

Table 47: LTKScreenContext member functions used: shaperectstui

Device context (LTKDeviceContext): Stores information about the device used for input.

Member functions used

Member function name Description

setSamplingRate () Stores the sampling rate of the device.

setXDPI () Stores the horizontal direction resolution of the device

setYDPI () Stores the vertical direction resolution of the device

setLatency () Stores the interval between the time of actual input to that of its
registration

setUniformSampling() Sets the flag to indicate if the sampling is uniform

Table 48: LTKDeviceContext member functions used: shaperectstui

Ink data structure (LTKTraceGroup): Stores the digital ink

Results data structure (LTKShapeRecoResult): Stores recognition result and returns it back to the

application program

Member functions used

Member function name Description

getShapeId () Returns the shape id

getConfidence () Returns the confidence corresponding to the shape id

lipitk.sourceforge.net

Table 49: LTKShaperecResult member functions used: shaperectstui

Usage: All logical manes for the projects mentioned in lipiengine.cfg are displayed in File menu Projects

submenu

User can select the project to be tested like SHAPEREC_ALPHANUM, user can draw the shape to be recognized

in Writing area, when user is finished drawing, in a timeout period it will process the shape and display 4 best

matching shapes in recognized results. Results are displayed in descending order of recognition accuracy.

If we draw „2‟ in writing area following results are displayed :

lipitk.sourceforge.net

14 Using Lipitk

14-1 Creating and using a shape secognizer

In this chapter, we will walk through the steps for creating a shape recognizer from scratch, using the

shape recognition modules provided by lipi-core-toolkit.

In broad terms, the steps involved in creating a shape recognizer are as follows:

 Installing the toolkit

 Setting up a lipi-core-toolkit Shape Recognition Project

 Collecting shape samples (handwriting data)

 Preparing the data for Training and Testing

 Building the Project

 Training the recognizer

 Testing the recognizer

 Evaluating recognition performance

 Packaging the Shape Recognizer for deployment

We will first create a shape recognizer for numerals using the numeral data provided with the toolkit.

We will then look at the integration of these recognizers into applications.

 NOTE: The scenarios described here do not require any changes to the code provided.

14-2 Creating a handwritten numeral recognizer

This section describes the steps for creating a numeral recognizer, using the demonumerals project

and data already provided with the toolkit.

Setting up a shape recognition project

Core Toolkit 4.0 provides the demonumerals project under the project directory

$LIPI_ROOT/projects/. Hereafter, we use $PROJ_ROOT to refer to the directory

$LIPI_ROOT/projects/demonumerals.

The project configuration file, project.cfg, for the demonumerals project is available under the

directory $PROJ_ROOT/config/. This file contains the following settings:

lipitk.sourceforge.net

ProjectType = SHAPEREC

NumShapes = 10

where, the key ProjectType defines the project as a shape (as opposed to word) recognition project.

The key NumShapes specifies the number of shapes to be recognized.

Core Toolkit 4.0 provides the default profile for this project. The profile configuration file,

profile.cfg, available under the directory $PROJ_ROOT/config/default/, contains the

following settings:

ShapeRecMethod = nn

where, the key ShapeRecMethod specifies nn as the shape recognition module to be used. In addition

to the profile.cfg, the default profile also provides the configuration file for the nearest neighbor

shape recognizer, nn.cfg.

Collecting shape samples (handwriting data)

The numerals project is packaged with ten handwritten samples of each numeral. Hence, this step can

be skipped for this project. However, the data collection tools are available under Core Toolkit

downloads on sourceforge

(https://sourceforge.net/project/showfiles.php?group_id=165380&package_id=206908).

User is advised to use any of the tools for collecting hand written data. The tool comes with a user

manual which describes the usage.

 Henceforth, we will use $CONFIG_DEFAULT to refer to the
$LIPI_ROOT/projects/demonumerals/config/default/ directory.

Data preparation for Training and Testing

Both training and testing requires lists (text files) of file names of data samples with their full paths and

the corresponding shape ids. The files trainlist.txt and testlist.txt have already been

provided in the $CONFIG_DEFAULT. The first 6 samples for each numeral are specified for training,

the remainder for testing.

 IMPORTANT: The data for the demonumerals project is only provided for the purposes of

illustrating the use of the toolkit. Building a good numeral recognizer and evaluating it thoroughly
would require much larger amounts of data.

Training the recognizer

The recognizer now needs to be trained using the list of training samples prepared earlier:

 Go to the bin directory

cd $LIPI_ROOT/bin

 Execute runshaperec to train the recognizer

https://sourceforge.net/project/showfiles.php?group_id=165380&package_id=206908

lipitk.sourceforge.net

runshaperec -train $CONFIG_DEFAULT/trainlist.txt

 -project demonumerals

 The steps listed above cause the profile configuration file to be read from

$PROJ_ROOT/config/default and used for training the chosen shape recognition module (in this

case, nn) using the training samples specified in trainlist.txt. Training the shape recognizer

results in the creation of model data, in this case nn.mdt. The model data file is generated in the

profile directory $PROJ_ROOT/config/default.

Testing the recognizer

The trained shape recognizer may now be tested on the test data earmarked earlier:

 Go to the bin directory

cd $LIPI_ROOT/bin

 Execute runshaperec, this time in test mode

runshaperec -test $CONFIG_DEFAULT/testlist.txt

 -project demonumerals

 -output results.txt

 This causes the nn.cfg and nn.mdt to be read from the profile directory

$PROJ_ROOT/config/default, and used for recognizing the samples specified in

testlist.txt. The results of testing are written to the results file results.txt, created in the

current directory.

Evaluating recognition performance

Core Toolkit provides the evaluation tool for assessing and analyzing the recognition performance of

a shape recognizer. The steps are as follows:

 Go to the scripts directory

cd $LIPI_ROOT/scripts

 Execute the evaluation tool using the results obtained from testing

perl eval.pl -input $LIPI_ROOT/bin/results.txt

 The evaluation tool computes the recognition accuracy and prints to the output stdout or file if

specified, and generates HTML pages corresponding to confusion matrices etc in the current directory.

Notes:

In the above example, we used the supplied default profile. Additional profiles may be created that

use other recognition modules, other parameters in nn.cfg, or other datasets for training and testing.

The best profile for a particular problem may be arrived at by a process of benchmarking recognition

accuracy using the different profiles.

lipitk.sourceforge.net

Since the Training-Test-Evaluation cycle may be repeated multiple times in the course of developing or

tuning a recognizer (perhaps with multiple profiles), you may also use the utility script benchmark.pl

that internally runs these steps in succession:

 Go to the scripts directory

cd $LIPI_ROOT/scripts

 Execute the benchmark script

perl benchmark.pl -project demonumerals

 -train

$CONFIG_DEFAULT/trainlist.txt

 -test

$CONFIG_DEFAULT/testlist.txt

Packaging the shape secognizer

Once the recognizer has been trained, tested, evaluated and found to be satisfactory, it can be

integrated into sample applications on the same machine or it may be packaged for deployment on a

new machine that has lipi tool kit already installed. The recognizer can be packaged using the script

packageRecognizer.pl. Execute the following command from command line to create recognizer

package.

Go to „scripts‟ directory in $LIPI_ROOT and execute following command

 packageRecognizer.pl -project < name of trained project available in $LIPI_ROOT „projects‟

directory > -logicalname <logical name for the project for eg. SHAPEREC_NUMERALS>

IMPORTANT: In case LipiDesigner is used to create the shape recognizer, the recognizer can

be packaged using the save option in the user interface of LipiDesigner.

NOTE: Packaging script packageRecognizer.pl supports only SHAPEPEC projects and not

WORDREC projects.

14-3 Integrating the shape recognizer with a

sample application on same machine

To integrate the new shape recognizer with sample applications on the same machine the shape

recognizer project name and a suitable logical name must be added to lipiengine.cfg as shown in

figure. After this the shape recognizer becomes available for integration into sample applications.

Please refer to the sample apps section 13-2 to get more information about developing a shape

recognition based application.

lipitk.sourceforge.net

LogFile=project_lipi.log

LogLevel=DEBUG

KANNADA_CHAR = kannada_char(default)

14-4 Integrating the shape recognizer with a

sample application on client machine

In this section, we will look at how to integrate the shape recognizer created using Core Toolkit into a

pen-based application. For the purposes of illustration, we will assume that the numerals recognizer

has been packaged as per the previous section.

The steps involved are as follows:

 Installing the packaged recognizer(s) on the client machine

 Integrating the recognizer into a sample application

The following section describes each step in detail.

Installing the package on the client machine

NOTE: Lipi Toolkit should be installed on client machine

The client machine is the computer on which we intend to use the recognizer by integrating it into a

(pen-based) application and is typically different from the machine on which the recognizer was

developed.

NOTE: The package contains only configuration and data files needed for the recognizer to function on

the target machine.

Copy the recognizer package (num_reco-packagename.zip) on onto the client machine. Go to

„scripts‟ directory in $LIPI_ROOT and execute following command

installRecognizer.pl –file <name of zip file containing packaged project for eg.

 num_reco-packagename.zip>

Zip file has to be in same directory as of installRecognizer.pl script file.

lipitk.sourceforge.net

Integrating the recognizer into an application

Essentially, once installed, the numerals recognizer becomes available for integration into

applications. The installed recognizer can be used by specifying the logical name,

SHAPEREC_LOGICALNAME, (This is the name that was specified with –logicalname option while

creating the package using packageRecognizer.pl)

 Please refer to the sample apps section 13-2 to get more information about developing a shape

recognition based application.

This section 13-4 also gives information about capturing digital ink corresponding to a shape made

on a digitizer or using the mouse or from a file, passing the ink to the recognizer, and getting back

the most plausible shape IDs and corresponding confidence values.

lipitk.sourceforge.net

15 Creating and using a word Recognizer

Core Toolkit 4.0 supports a limited form of word recognition – that of boxed fields of characters

(shapes), via the included Boxed-Field recognizer. The Boxed-Field recognizer is a wrapper around

the shape recognizer for recognizing isolated shapes, but has a different “word recognition” API that

takes an entire field of ink as input, and returns strings as the output.

In this chapter, we will walk through the steps in creating a boxed field recognizer for numeric fields

(digit strings), which might be applied for instance in a form filling application. We will assume that a

shape recognizer for isolated numerals has already been created in the project demonumerals, as

detailed in section 14-2 .

15-1 Creating a Boxed-Field recognizer for

numeric fields

The effort of creating a Boxed-Field recognizer is essentially the effort of creating and evaluating the

corresponding isolated shape recognizer. Once the latter has been accomplished, the steps involved

in creating a Boxed-Bield recognizer are limited to:

 Setting up a word recognition project

 Building the project

Let us look at these steps in turn. We will assume here that a shape recognizer for isolated numerals is

already available at $LIPI_ROOT/projects/demonumerals. We will use the shorthand

$SHAPEREC_PROJ_ROOT to refer to this directory.

Setting up the word recognition project

The steps involved in creating a new word recognition project are similar to those for a shape

recognition project:

 Create a new project directory

Create a new project directory, num_fld, for the recognizer under the projects directory

$LIPI_ROOT/projects, henceforth referred to as $PROJ_ROOT.

 Create a project configuration file

Create a project configuration file $PROJ_ROOT/<project_name>/config/project.cfg

with the following contents:

ProjectName = “Numeric Field Recognizer”

ProjectType = WORDREC

Note that, the configuration file identifies the project as a word recognition project, as opposed

to a shape recognition project. Also, information about the number of shapes is NOT included.

 Create a default profile directory

lipitk.sourceforge.net

Create a default profile directory at $PROJ_ROOT/<project_name>/config, and a profile

configuration file $PROJ_ROOT/<project_name>/config/default/profile.cfg with

the following contents:

WordRecognizer = boxfld

RequiredProjects =demo

numerals

Note that the profile configuration specifies boxfld as the word recognition module to be used for

the word recognition problem. This allows the possibility of specifying alternative word

recognition module, e.g., capable of handling numeral sequences written without boxes.

The profile configuration also specifies the project demonumerals as a prerequisite for the

num_fld project.

 Copy the boxfld.cfg to default profile directory

Copy the configuration file for the boxfld word recognizer, boxfld.cfg, from

$LIPI_ROOT/doc to $PROJ_ROOT/config/default. The default contents of the file are as

follows and may be modified as needed.

MaxBoxCount= 30

BoxedShapeProject = numerals

BoxedShapeProfile = default

The boxfld recognizer requires a shape recognizer project and profile in order to function, and

these are specified in its configuration file. Here, MaxBoxcount refers to the maximum number of

characters in the boxed field.

Please refer to the sample apps section 13-3 to get more information about developing a word

recognition based application.

lipitk.sourceforge.net

16 Appendix

16-1 Setting environment variables in Linux

In case of Linux, set the environment variable using the appropriate shell command:

export LIPI_ROOT=/home/testusers/lipi

16-2 Perl for Windows

Download Perl from the following link:

http://www.activestate.com/Products/ActivePerl/

For install instructions, follow the link:

http://aspn.activestate.com/ASPN/docs/ActivePerl/install.html

16-3 Default config file nn.cfg

nn.cfg is bundled with toolkit installer and is available at:

$LIPI_ROOT/doc

16-4 Default config file activedtw.cfg

activedtw.cfg is bundled with toolkit installer and is available at:

$LIPI_ROOT/doc

16-5 Default config file neuralnet.cfg

neuralnet.cfg is bundled with toolkit installer and is available at:

$LIPI_ROOT/doc

http://www.activestate.com/Products/ActivePerl/
http://aspn.activestate.com/ASPN/docs/ActivePerl/install.html

lipitk.sourceforge.net

16-6 Sample ink file for runwordrec

An ink for word recognition must have the following attributes

1. The .HIERARCHY tag should identify it as a WORD CHARACTER, as opposed to CHARACTER

for a shape recognition ink file.

2. The stroke indices and the truth corresponding to them should also be written in the ink file.

Example:

.SEGMENT CHARACTER 0 GOOD "0 0 __"

.SEGMENT CHARACTER 1,2 GOOD "1 0 __"

.SEGMENT CHARACTER 3 GOOD "2 0 __"

The above mentioned lines specify that

1. The truth associated with the character with stroke index 0 is class 0

2. Stroke index 1 and 2 correspond to class 1

3. Stroke index 3 corresponds to class 2

.VERSION 1.0 0

.HIERARCHY WORD CHARACTER

.COORD X Y T

.SEGMENT WORD

.X_POINTS_PER_INCH 2500

.Y_POINTS_PER_INCH 2500

.POINTS_PER_SECOND 1200

.SEGMENT CHARACTER 0 GOOD "0 0 __"

.SEGMENT CHARACTER 1,2 GOOD "1 0 __"

.SEGMENT CHARACTER 3 GOOD "2 0 __"

.PEN_DOWN

3814 182 17184

3816 181 0

3814 181 0

3594 298 0

...

...

...

3583 260 0

3583 260 0

.PEN_UP

.PEN_DOWN

lipitk.sourceforge.net

3908 730 2513

3919 716 0

3936 694 0

3955 671 0

...

...

...

4423 1482 0

4431 1475 0

4433 1466 15632

.PEN_UP

.PEN_DOWN

3754 1667 2513

3766 1672 0

3787 1671 0

...

...

...

5010 1604 0

5105 1606 0

5184 1611 0

5229 1624 17605

.PEN_UP

.PEN_DOWN

3763 418 17184

3750 426 0

3735 432 0

...

...

...

4531 1473 0

4587 1473 25396

.PEN_UP

lipitk.sourceforge.net

16-7 Sample list file for train/test

<Data-files-path>/usr0/000t01.txt 0

<Data-files-path>/usr0/000t02.txt 0

<Data-files-path>/usr1/000t01.txt 0

...

<Data-files-path>/usr27/001t01.txt 1

<Data-files-path>/usr27/001t02.txt 1

...

16-8 Sample list file for adapt

<Data-files-path>/usr118/017t02.txt 17 #

<Data-files-path>/usr125/007t01.txt 7 #

<Data-files-path>/usr130/001t02.txt 1 #

<Data-files-path>/usr142/037t02.txt 37 #

<Data-files-path>/usr143/032t01.txt 32 #

<Data-files-path>/usr138/044t02.txt 44 #

...

<Data-files-path>/usr139/035t01.txt 35

<Data-files-path>/usr143/003t01.txt 3

...

...

Above sample the lines with a # in the end are initial prototypes that are added to the model before adaptation.

16-9 Configurable make settings for Linux

In the case of Linux, the configurable options are specified in global.mk

Configurable options Remarks

CC=g++ GNU compiler used for compiling cpp files

lipitk.sourceforge.net

LINKLIB=-ldl –lc Add any standard required libraries, e.g.–lm links
math library

CFLAGS = -c To compile in debugging mode add -g to CFLAGS

SHFLAGS=-shared –fpic Flags required to build .so shared object

Table 37: Configurable make settings for Linux

16-10 Module dependencies on Windows

Module Dynamic Libraries (DLLs) Static Library

NN/

ActiveDTW/

Neural network

1 nn.dll/ activedtw.dll/ neuralnet.dll

2 preproc.dll

3 pointfloat.dll/npen.dll/l7.dll/substroke.dll
(Feature extractor dll, based on
configuration)

4 lipiengine.dll

5 logger.dll

1 common.lib

2 utils.lib

3 shapereccommon.lib

4 featureextractorcommon.lib

Boxfld 1 boxfld.dll

2 nn.dll /activedtw.dll/neuralnet.dll (Shape
recognizer dll, based on configuration)

3 preproc.dll

4 pointfloat.dll/npen.dll/l7.dll/substroke.dll
(Feature extractor dll, based on
configuration)

5 lipiengine.dll

6 logger.dll

1 common.lib

2 utils.lib

3 shapereccommon.lib

4 featureextractorcommon.lib

5 wordreccommon.lib

Table 38: Module dependencies for Windows

16-11 Module dependencies on Linux

Module Shared Libraries (.so) Static Library

NN/

ActiveDTW/

Neural network

1 libnn.so/ libactivedtw.so/ libneuralnet.so

2 libpreproc.so

3 libpointfloat.so/libnpen.so/libl7.so/libsubstroke.so
(Feature extractor shared library, based on
configuration)

4 liblipiengine.so

5 liblogger.so

1 libcommon.a

2 libutils.a

3 libshapereccommon.a

4 libfeaturextractor.a

Boxfld 1 libboxfld.so

2 libnn.so/libactivedtw.so/libneuralnet.so (Shape
recognizer shared library, based on configuration)

3 libpreproc.so

4 libpointfloat.so/libnpen.so/libl7.so/libsubstroke.so
(Feature extractor shared library, based on
configuration)

5 liblipiengine.so

1 libcommon.a

2 libutils.a

3 libshapereccommon.a

4 libfeaturextractor.a

5 libwordreccommon.a

lipitk.sourceforge.net

6 liblogger.so

Table 39: Module dependencies for Linux

16-12 Options file for the eval tool

Optionsfile.txt

File containing the results

input=/home/user/lipitk/resultfile.txt

Output file to write the accuracy <optional>

If not mentioned the output is displayed on the screen

output=outputfile.txt

Number of top errors, to be printed in the performance analysis matrix

<optional>

default value is 5

topErrors=1

Number of images per row in the HTML file of each class <optional>

default value is 10

images=12

Number of topchoices to consider for the performance analysis

<optional>

default value is 1

top_choices=3

16-13 Feature extraction

PointFloatShapeFeatureExtractor extracts the following features from each point along the stroke

trajectory:

 X dimension - The X-Coordinate of the point

 Y dimension - The Y-Coordinate of the point

 Sine theta – Sine of the angle between the line segment joining two adjacent points and the
X-axis (Note: Though the value of sine theta ranges from [-1 1] the extracted value for this
feature has been normalized to the range [0 10])

 Cosine theta – Cosine of the angle between the line segment joining two adjacent points and
the X-axis (Note: Though the value of sine theta ranges from [-1 1] the extracted value for this
feature has been normalized to the range [0 10])

lipitk.sourceforge.net

 Pen up – This is true if the point is the last point in a trace; otherwise set to false.

NPenShapeFeatureExtractor extracts the following features from each point along the stroke trajectory:

 X dimension - The X-Coordinate of the point

 Y dimension - The Y-Coordinate of the point

 Cosine alpha - Cosine of the angle subtended by the line segment joining the neighboring
points on either side with the x-axis

 Sine alpha - Sine of the angle subtended by the line segment joining the neighboring points
on either side with the horizontal line.

 Cosine beta - Cosine of the angle formed by the line segments joining the point of
consideration and its second neighboring points on either side.

 Sine beta - Sine of the angle formed by the line segments joining the point of consideration
and its second neighboring points on either side.

 Aspect - Captures the aspect ratio of the bounding box containing the points in the „vicinity‟
of the point under consideration

 Curliness - Curliness at a point gives the deviation of the points in the vicinity from the line
joining the first and last point

 Linearity - Average squared distance between every point in the vicinity and the line joining
the first and last point

 Slope - Cosine of the angle formed by the line joining the first and last point of the vicinity
with the x-axis

 Pen Up - This is true if the point is the last point in a trace; otherwise set to false.

NOTE: Detailed descriptions of the above features along with the formulae for computing them

may be found in the NPen++ paper [12].

SubStrokeShapeFeatureExtractor splits the strokes into sub-strokes based on the complexity of the

trajectory and extracts the following features from each sub-stroke:

 Theta0-4 – Angles between two adjacent points of the sub-stroke and the X-axis after
resampling the sub-stroke to six points.

 X center of gravity – The mean of X-coordinate values of the sub-stroke normalized by the
width of the character.

 Y center of gravity - The mean of Y-coordinate values of the sub-stroke normalized by the
height of the character.

 Length - The length of the sub-stroke normalized by the height of the character.

NOTE: Detailed descriptions of the above features along with the formulae for computing them may be

found in this paper [13].

L7ShapeFeatureExtractor extracts the following features from each point along the stroke trajectory:

 X dimension - The X-Coordinate of the point

 Y dimension - The Y-Coordinate of the point

 X first derivative - Normalized first derivative with respective to X.

lipitk.sourceforge.net

 Y first derivative - Normalized first derivative with respective to Y.

 X second derivative - Normalized second derivative with respective to X.

 Y second derivative - Normalized second derivative with respective to Y.

 Curvature - Curvature of the stroke at the point.

 Pen Up - This is true if the point is the last point in a trace; otherwise set to false.

NOTE: Detailed descriptions of the above features along with the formulae for computing them may be

found in these papers [16] and [17].

16-14 Shape recognition

Nearest-Neighbor classifier

The Nearest-Neighbor (NN) classifier implements the standard Nearest Neighbor algorithm for shape

recognition. Nearest Neighbor algorithm is a method of classifying the test sample based on the

closest training samples in the feature space. The training method of the NN classifier exposed by the

shape recognizer implements two prototype selection algorithms one based on Hierarchical Clustering

(HC) and the other based on Learning Vector Quantization (LVQ). Dynamic Time Warping (DTW) is

used as the measure of similarity between the character samples. The recognition method provides

Euclidean filter for pruning candidate neighbors based on Euclidean distance in order to reduce the

number of prototypes to be considered for relatively expensive DTW computation. The algorithm also

supports adaptation where in the prototypes are morphed gradually to learn the style of the writer.

ActiveDTW classifier

Active DTW is a classifier for shape recognition [14]. The classifier's training method creates models

for each class known as Active Shape Models. Each of these Active Shape Models consists of cluster

models and singleton prototypes. The clusters are formed based on the Hierarchical clustering module

bundled with Lipi toolkit. The most significant Eigen Values, Eigen Vectors of the cluster, the cluster

mean and the number of samples in a cluster forms the cluster model. Testing comprises of computing

the nearest neighbor of the new test sample with DTW distance as the measure of similarity. The

similarity measure between a test sample and a singleton prototype of a class is the DTW distance.

Computation of a similarity measure between the test sample and a cluster model involves

constructing an optimal deformation which is closest to the test sample, according to the ActiveDTW

algorithm. The distance of a test samples from a class is considered as the minimum of the two

distances. A Euclidean filter, similar to the one provided in NN is available to prune the candidate

neighbors based on the Euclidean distance in order to reduce the computation time.

ActiveDTW classifier also provides a framework to adapt the shape models created by Active-DTW

classier during training [15], using new labeled samples encountered during testing. Incrementally

adapting a model of class to a new sample requires computation of the modified model from the

already learned model and the test sample. Based on whether the test sample is closer to model of a

cluster or to a free sample of the class, either the model corresponding to the cluster or the set of free

samples is modified.

lipitk.sourceforge.net

Neural Network classifier

The Neural Network classifier implements the standard Multi Layer Perceptron for shape recognition.

It uses the Back Propagation (BP) algorithm for training.

All the above shape recognizers expose a standard shape recognition API, which allows the

recognizer to be trained, and invoked for recognition with a TraceGroup (group of traces)

corresponding to a single or multi-stroke shape or character.

16-15 References

[1] Sriganesh Madhvanath, Deepu Vijayasenan and Thanigai Murugan Kadiresan, “Lipitk: A

Generic Toolkit for Online Handwriting Recognition,” Proceedings of the 10th International Workshop

on Frontiers in Handwriting Recognition, La Baule, France, Oct 2006.

[2] The Carnegie Mellon Sphinx Project, http://cmusphinx.sourceforge.net

[3] The Festival Speech Synthesis System, http://www.cstr.ed.ac.uk/projects/festival

[4] Shanmugham, S., Monaco, P. and B. Eberman, "MRCP: Media Resource Control Protocol,"

Internet Draft draft-shanmugham- mrcp-05, January 2004

[5] Rosetta – Multistroke/Full Word Handwriting Recognition for X,

http://www.handhelds.org/project/rosetta

[6] XStroke: Full-screen Gesture Recognition for X,

http://www.usenix.org/events/usenix03/tech/freenix03/full_papers/worth/worth_html/xstroke.html

[7] WayV Project, http://www.stressbunny.com/wayv

[8] UNIPEN 1.0 Format Definition, http://www.unipen.org/pages/5/index.htm

[9] InkML – The Digital Ink Markup Language, www.w3.org/2002/mmi/ink

[10] Mudit Agrawal, Kalika Bali, Sriganesh Madhvanath, Louis Vuurpijl, “UPX: A New XML

Representation for Annotated Datasets of Online Handwriting Data,” 8th International Conference on

Document Analysis and Recognition, Seoul, Korea, Aug 29 - Sept 1, 2005.

[11] HRE API: A Portable Handwriting Recognition Engine Interface,

http://playground.sun.com/pub/multimedia/handwriting/hre.html

[12] S. Jaeger, S. Manke, J. Reichert, and A. Waibel, “Online handwriting recognition: The NPen++

recognizer,” International Journal on Document Analysis and Recognition, vol. 3, no. 3, pp. 169–

180, Mar. 2001

[13] Parui, S.K., Guin, K. Bhattacharya, U., Chaudhuri, B.B., "Online handwritten Bangla character

recognition using HMM," International Conference on Pattern Recognition, pp. 1-4, Dec.2008

[14] Muralikrishna Sridhar, Dinesh Mandalapu, Mehul Patel, "Active-DTW : A Generative Classifier

that combines Elastic Matching with Active Shape Modeling for Online Handwritten Character

Recognition," International Workshop on Frontiers in Handwriting Recognition, 2006

http://cmusphinx.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival
http://www.handhelds.org/project/rosetta
http://www.usenix.org/events/usenix03/tech/freenix03/full_papers/worth/worth_html/xstroke.html
http://www.stressbunny.com/wayv
http://www.unipen.org/pages/5/index.htm
http://www.w3.org/2002/mmi/ink
http://playground.sun.com/pub/multimedia/handwriting/hre.html

lipitk.sourceforge.net

[15] Vandana Roy, Sriganesh Madhvanath, Anand S., Ragunath R. Sharma, "A Framework for

Adaptation of the Active-DTW Classifier for Online Handwritten Character Recognition," International

Conference on Document Analysis and Recognition, pp. 401-405, 2009

[16] M.Pastor, A. Toselli, and E.Vidal, “Writing Speed Normalization for On-Line Handwritten Text

Recognition,” International Conference on Document Analysis and Recognition, 2005

[17] Jagadeesh Babu V , Prasanth L , Raghunath Sharma R , Prabhakara Rao G. V , Bharath A ,

“HMM-based Online Handwriting Recognition System for Telugu Symbols,” International Conference

on Document Analysis and Recognition, 2007

lipitk.sourceforge.net

17 Glossary

Project lipi-core-toolkit parlance for a grouping of recognizer configurations, targeted
at a particular shape or word recognition problem.

Profile Specific set of configuration files associated with, and generally addressing a
specific aspect of, a particular Project. Specific Profiles of the same Project
may be created for specific writers, specific datasets, and so forth.

Lipitk Lipi Toolkit

HWR Hand-Writing Recognition

DLL Dynamic Link Library - On Windows platforms, a library linked dynamically

as needed

SO Shared Object (Linux) - On Linux platforms, a library linked dynamically as

needed

Stroke The sequence of pen points between two consecutive pen events, pen down
and pen up

Tar A file compression format and utility generally found on UNIX platforms; the
act of compressing a file using this utility

Untar A utility for uncompressing files compressed using tar, generally found on
UNIX platforms; the act of uncompressing a tar‟d file using this utility

tarball or tar file A file in the tar format, generally a compressed collection of files

UNIPEN 1.0 A standard format from the International Unipen Foundation

(www.unipen.org) to store on-line handwriting data (as digital ink) and its

annotations.

http://www.unipen.org/

lipitk.sourceforge.net

18 Acknowledgement

We would like to thank IRESTE, University of Nantes (France) for providing the handwriting database

termed IRONOFF. The pre-built recognizers are trained using the IRONOFF data. For more details

see http://www.infres.enst.fr/~elc/GRCE/news/IRONOFF.doc

http://www.infres.enst.fr/~elc/GRCE/news/IRONOFF.doc

