

Reference Manual

Lipi Toolkit 1.1

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Table of Contents

1 Introduction ...3

2 Supported platforms and environment ..3

3 Overview and architecture ..3

4 Module documentation..7
4.1 Lipi engine module ...7
4.2 Common preprocessor module ..8
4.3 Shape recognition interface..10
4.4 PCA module ...13
4.4.1 PCAFeatureExtractor 13
4.4.2 PCAShapeModel 13
4.4.3 PCAShapeRecognizer 13
4.4.4 Flow diagrams 16
4.4.5 Configuration attributes 18
4.4.6 Build instructions 21
4.4.7 Required libraries 21
4.4.8 Exported functions 21
4.4.9 Support header files 22
4.4.10 Compile flags 22
4.5 DTW module...22
4.5.1 DTWFeatureExtractor 22
4.5.2 DTWShapeModel 24
4.5.3 DTWShapeRecognizer 24
4.5.4 Flow diagrams 26
4.5.5 Configuration attributes 28
4.5.6 Source directory hierarchy 30
4.5.7 Build instructions 31
4.5.8 Required Libraries 31
4.5.9 Exported functions 31
4.5.10 Support header files 32
4.5.11 Compile flags 32
4.6 Word Recognition Interface..32
4.7 Word recognition module ...34
4.7.1 LTKRecognitionContext 35
4.7.2 BoxedFieldRecognizer 38
4.7.3 Flow diagrams 38
4.7.4 Sequence Diagrams 40
4.7.5 Configuration Attributes 43
4.7.6 Source Directory Hierarchy 43
4.7.7 Build instructions 43
4.7.8 Exported Functions 44
4.7.9 Required Libraries 44
4.7.10 Support header files 45
4.7.11 Compile Flags 45

5 LipiTk 1.0 errors and descriptions...45

6 Using LipiTk – A walk through...47
6.1 Writing a new shape recognizer module ABC..47

1

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

6.2 Adding new preprocessing methods and the configuration ...49

7 Appendix ...50
7.1 Using doxygen to generate detailed source documentation ...50
7.2 References ...52
7.3 Glossary ...52

2

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

1 Introduction

Lipi Toolkit (LipiTk) is a generic toolkit for Online Handwriting Recognition
(HWR). It provides a set of script-independent shape recognizers, tools and
building blocks which can be used by different kinds of users for different
scripts and shapes.

This document describes the source level details of all the core modules of
LipiTk such as Preprocessor, PCA, DTW and Boxed Field. The interfaces and
the data structures are also discussed in detail.

2 Supported platforms and environment
• Windows XP Professional edition, Windows 2000 Professional edition.

• Redhat Enterprise Linux Edition 3.0,

• GNU Linux 2.6.9.22

• GNU Linux (Ubuntu) 2.6.14.6

3 Overview and architecture

LipiTk is a collection of tools and shape recognizers for Online Handwriting
Recognition. It defines the standard interfaces for HWR and also implements
them using PCA and DTW shape recognizers. It contains various scripts and
tools for the user to train and test the shape recognizer with data samples. It
allows the user to build, package and deploy the customized recognizer
component created out of LipiTk to other applications which require online
HWR.

LipiTk was intended to support both Windows and Linux platforms, hence its
design and implementation considers portability related issues for both. Most of
the algorithms and tools are implemented using C++ & STL. Only ANSI
functions are used for portability. Some of the utilities and scripts are written in
Perl.

The major components of the toolkit are described below:

3

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Figure 2. Lipi Toolkit Architecture and Components

Note: There is no annotation tool shipped along with LipiTk in version 1.0. You
will need to use Uptools from the Intl. Unipen Foundation for annotation. Refer
to Section 5 of the Tools manual for more details.

• Generic class and utilities library

The generic class library includes classes to store and manipulate ink traces,
such as Trace and TraceGroup, and classes to store device and screen context.
These classes are shared by different algorithms and tool implementations. The
design of these classes reflects a tradeoff between a conceptually intuitive and
object-oriented data model, and efficient access to frequently accessed
attributes, such as X and Y channels in the case of ink traces.

The utilities library provides utility functions to read and write LipiTk
configuration files, read and write Unipen data files, and so on.

4

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• HWR algorithms

LipiTk 1.0 provides implementations of common preprocessing operations,
common shape recognition algorithms, as well as a boxed field recognizer
which iteratively calls one of the shape recognizers to interpret a boxed field of
ink input. The preprocessing module, as well as the shape recognition and
boxed field recognition modules are implemented as separate dynamic link
libraries that can be loaded at runtime.

• Generic preprocessing

The generic preprocessing module provides implementations of commonly used
shape/character preprocessing operations such as moving-average smoothing,
size normalization, dehooking, and equidistant resampling. All of the operations
have configuration options that can be varied using corresponding properties
captured in a configuration file.

• Shape recognition

The two shape recognition algorithms bundled with LipiTk 1.0 are Subspace-
based classification (PCA), and Nearest-Neighbor classification based on
Dynamic Time Warping (DTW).

In subspace classification, each shape is represented by a set of principal
components computed from a fixed length representation of the online shape,
obtained after size normalization and equidistant resampling. The training
method provided computes the principal components from the training data, and
stores them in a standard binary format.

The DTW implementation uses the same fixed length representation as the
subspace classifier, together with a Nearest Neighbor classifier. The training
method exposed by the shape recognizer provides a choice of different
prototype selection algorithms for prototype reduction.

Both shape recognizers expose a standard shape recognition API which allows
the recognizer to be loaded, trained, and invoked on a TraceGroup (group of
traces) corresponding to a single or multi-stroke shape or character.

In either case, important parameters (such as the number of principal
components) as well as the sequence of preprocessing operations are externally
configurable using configuration files.

• Boxed field recognition

As mentioned earlier, the boxed field recognizer is useful for recognizing a
boxed field of shapes, and in turn invokes a trained shape recognizer on each of
the boxes, and uses a simple trellis for decoding the best strings based on the
cumulative shape recognition confidences.

Significantly, the boxed field recognizer exposes a generic word recognition
API, allowing the possibility of plugging in a connected word recognizer in the
future in a backward-compatible manner.

5

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• Tools and utilities

LipiTk 1.0 provides a number of tools and utilities to support the tasks of
handwriting data collection, data annotation, and the training and evaluation of
shape recognizers.

• Data collection and annotation tools

Collection and annotation of handwriting data is an important activity in the
data-driven methodology for creating recognition engines. LipiTk 1.0 includes a
generic TabletPC-based data collection tool capable of collecting isolated
symbols, characters or words from writers. We hope to include in subsequent
releases, tools based on Digital Pen and Paper or PDAs, as well as tools running
on Linux.

The annotation tool supports the tagging of digital ink with labels corresponding
to ground truth, writing style etc. at different levels of an appropriate hierarchy
of annotation.

Note: There is no tool shipped along with LipiTk in version 1.0. You will need
to use Uptools for annotation. Refer to Tools manual section 5 for more details.

• Evaluation tool

The evaluation tool computes statistics related to classification accuracy and
performance of the built engine on the test data, and allows visualization of the
results in ways that facilitate analysis of the errors. LipiTk 1.0 includes a basic
evaluation tool written in Perl which renders top N accuracies and confusion
matrices in the form of HTML pages.

• Utilities

In addition to the above tools, LipiTk 1.0 also includes a number of scripts to
facilitate tasks such as extraction of isolated character data from the annotated
data (which may be words), and performing DOS to UNIX conversion of
dataset.

• Packaging framework

LipiTk provides build scripts to support the creation of specific engines from
the source code. These scripts interpret project configuration files and build the
necessary source code into libraries and binaries, using a hierarchy of static
module-specific Makefiles.

LipiTk also provides scripts for packaging the built engine(s) for deployment,
and integration into a pen-based application. The components of the package are
fully user-configurable, and the packaging script creates a self-extract package
file (or gzipped tar file in the case of Linux) that contains all the components
selected for packaging by the user.

Finally, LipiTk provides sample code to assist the application developer in
integrating an engine created using LipiTk into his or her application.

6

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• Lipi engine

The Lipi engine is the run-time component of engines created using the LipiTk.
It is responsible for loading one or more shape/word recognition modules as
specified in its configuration file, routing requests for recognition from the user
application to the appropriate modules, and returning recognition results to the
application.

4 Module documentation

Note: You can use Doxygen to generate the detailed function level information.
For details refer Appendix 9.1

4.1 Lipi engine module

The Lipi engine is the run-time component responsible for loading one or more
shape/word recognition modules as specified in its configuration file, routing
requests for recognition from the user application to the appropriate modules,
and returning recognition results to the application.

Sl.no Function name Description

1 createLTKLipiEngine Returns the instance handle
of LTKLipiEngineModule to
the client.

2 getCurrentVersion Client can use this to get the
version of this module

3 startLogging Client can use this to start
logging

4 stopLogging Client can use this to stop the
logging

Note: LTKLipiEngineModule is a singleton class and a client process can have
only one instance of LTKLipiEngineModule at anytime.

The LTKLipiEngineModule class implements the interface
LTKLipiEngineInterface. The list of all the methods and their description is
given below. The client application calls all the methods with the
LTKLipiEngineModule instance handle returned by createLTKLipiEngine.

7

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

LTKLipiEngineModule and its methods:

Sr.no Function name Description

1 initializeLipiEngine Reads the lipiengine.cfg and
initializes the Lipi engine.

2 createShapeRecognizer Creates shape recognizer
object, by passing the logical
project name or by passing
both project name and
profile name (when this
function call has one
parameter then it is assumed
as logical name).

3 createWordRecognizer Creates word recognizer
object, by passing the logical
project name or by passing
both project name and
profile name (when this
function call has one
parameter then it is assumed
as logical name).

4 deleteShapeRecognizer Deletes the shape recognizer
object created using
createShapeRecognizer call.

5 deleteWordRecognizer Deletes the word recognizer
object created using
createWordRecognizer call.

6 createRecognitionContext Creates recognition context
(used in boxed-field
recognition).

7 deleteRecognitionContext Deletes the recognition
context created using
createRecognitionContext
call.

4.2 Common preprocessor module

This common preprocessor module implements preprocessing functions which
are commonly used across various shape recognizers. i.e. PCA, DTW.

8

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

All the preprocessing functions in this module follow a standard function
prototype as follows:

<Preproc_func_name>(constLTKTraceGroup&inTraceGroup,LTKTraceGroup&
outTraceGroup)

This module can be found under the directory
$LIPI_ROOT/src/reco/shaperec/preprocessing.

The table below describes the list of all common preprocessing functions with
the descriptions.

The sequence in which these functions need to be executed can be configured in
the shape recognizer’s configuration file using the attribute PreprocSequence as
follows:

PreprocSequence={CommonPreProc::<funcname1>,
PCA::<funcname0>,CommonPreProc::<funcname2>…}

Note: No space is allowed in between the function names. Use commas to
separate the function names.

Sr.no Function name Description

1 normalizeSize Normalizes the size of the
incoming trace group to a
value specified in
configuration file (Refer
section 4.3.5)

6 normalizeOrientation Normalizes the orientation
of the incoming trace group

7 smoothenTraceGroup Smoothens the given
tracegroup using moving
average

8 centerTraces Centers the traces of a trace
group to the center of its
bounding box

9 dehookTraces Dehooks the traces of the
tracegroup

10 removeDuplicatePoints Remove consecutively
repeating x, y coordinates
(thinning)

A sample preprocessing sequence in pca.cfg is given below:

PreprocSequence={CommonPreProc::normalizeSize,PCA::resampleTraceGroup}

9

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

In the above example, it calls normalizeSize from the common preprocessor
module and resampleTraceGroup function from the PCA shape recognizer.

4.3 Shape recognition interface

LipiTk provides a standard set of interfaces for all the shape recognition
modules. This allows the user to dynamically configure and use any new shape
recognition module at run-time. This section describes the shape recognition
interface in detail.

The class LTKShapeRecognizer defines the standard interface. The header file can
be found under $LIPI_ROOT/src/include/LTKShapeRecognizer.h. Any new shape
recognition module that you create should derive this interface and implement
all the functions.

The methods that need to be implemented by any new shape recognition module
are given below:

• int initialize((string& strProjectName, string &strProfileName)

Description

This method initializes the shape recognizer. I.e. reading the configuration file
like pca.cfg

Input parameters

strProjectName contains the project name and strProfileName contains the
profile name of the project

Return values

0 if successful and other value if unsuccessful.

• int loadModelData()

Description

This method loads the model data file into memory from the model data file.
Model data file should be available under “$LIPI_ROOT/projects/<project
folder>/config/<profile folder>” as <algomodulename>.mdt

Input parameters

None

Return values

0 if successful and other value if unsuccessful.

10

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• int recognize (const LTKTraceGroup& traceGroupObj, const
LTKScreenContext& screenContext, const vector<bool>&
shapeSubSet,float confThreshold, int numChoices,
vector<LTKShapeRecoResult>& results)

Description

This method is called by the client application to recognize the given
traceGroupObj.

Input parameters

traceGroupObj is the trace group which is to be recognized

screenContext holds the co-ordinates of the writing area provided for the set of
traces being sent for recognition.

shapeSubSet is a subset of the entire class space which is to be used for
recognizing the input shape.

confThreshold is a threshold on the confidence value of the recognized class.
This is used as rejection criterion.

numOfChoices is the number of top classes to be returned.

Output Parameters

Results contain shapeId and confidence for each of the top classes.

• int train (const string& trainingList, string&
strModelDataHeaderInfoFile, string &comment, string &dataset)

Description

This method is invoked to train the recognizer with the set of model data. At the
end of training, this method creates the model data file under
$LIPI_ROOT/projects/<project folder>/config/<profile folder> as <algomodulename>.mdt

Input parameters

trainingList is the name of the file containing the list of files to be used for
training each of the classes.

strModelDataHeaderInfoFile is the name of the file containing the list of
attribute value pairs which are going to be part of the model data header.

comment is the string value which contains the general comment on the model
data file

dataset is a string which contains the name of the dataset used for training

11

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• int unloadModelData()

Description

This method frees the model data information used for recognition from
memory

Input parameters

None

Return values

0 if successful and other value if unsuccessful.

• int setDeviceContext(LTKCaptureDevice& deviceinfo)

Description

This method allows the client application to set the device parameters to the
shape recognizer. The application needs to set following parameters in the
capture device structure:

• Sampling rate (points per second)

• Horizontal and vertical resolution (dots per inch)

• Latency time (ms)

• Flag denoting whether the device sampling is uniform

Input parameters

deviceinfo – structure which contains the device parameters

Return values

0 if successful and other value if unsuccessful.

• int getLastError ()

Description

This method is called by the client application to get the last error that occurred
during any operation within the shape recognizer module.

Input parameters

None

Return values

12

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Error code. [Refer section 5 for more details on error codes]

4.4 PCA module

The PCA module is an implementation of the PCA shape recognition algorithm.
This algorithm uses distance to the subspace formed by the principal
components of each class to find the nearest class to a given test sample. The
following sections document the PCA shape recognition module in detail.

LipiEngine reads from the config file and initializes the PCA shape recognition
module. The PCA module has three classes – PCAFeatureExtractor,
PCAShapeModel and PCAShapeRecognizer.

These are described in detail below:

4.4.1 PCAFeatureExtractor

This class is used to extract the features from a given character. The following
method is used to extract the features from the preprocessed trace group.

• static int extractFeatures (LTKTraceGroup traceGroupObj,
floatVector& featureVector);

Description

This static function extracts the features from a trace group object. The feature
vector is formed by concatenating the x and y channels of the trace group
object.

Input parameters

traceGroupObj contains the trace group.

Output parameters

featureVector contains the extracted features.

4.4.2 PCAShapeModel

This class represents the model data for recognition. The model data comprises
a set of eigenvalues and eigenvectors for each class. This class has methods to
get and set the shape models.

4.4.3 PCAShapeRecognizer

13

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

This class contains the methods that implement a PCA based shape recognizer.
The methods in this class can be categorized into two groups. The first group
contains methods for training and the second for recognition.

Training is performed by taking the training list file as input, performing PCA
on the samples of each class, and writing the computed eigenvectors and
eigenvalues of each class in the model data file. The eigenvectors and
eigenvalues of each class form the shape model.

Recognition function predicts the class label of the input sample by finding the
distance of the sample to the subspaces formed by shape models of each class.
The top N nearest classes along with confidence measures are returned in the
result data structure.

• int train (const string& trainingList, string&
strModelDataHeaderInfoFile, string &comment, string &dataset)

Description

This is the train method of the PCA shape recognizer.

Input parameters

trainingList is the name of the file containing the list of files to be used for
training each of the classes.

strModelDataHeaderInfoFile is the name of the file containing the list of
attribute value pairs which are going to be part of the model data header.

comment is the string value which contains the general comment on the model
data file

dataset is a string which contains the name of the dataset used for training

• int preprocess (const LTKTraceGroup& inTraceGroup,
LTKTraceGroup& outTraceGroup)

Description

This function calls the preprocessing methods in order, as specified in the
preprocessing sequence of the config file (pca.cfg).

Input parameters

inTraceGroup is the input trace group.

Output parameters

outTraceGroup is the preprocessed trace group.

14

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• int computeEigenVectors (vector< vector<float> > &covarianceMatrix,
int n, vector<float> &eigenValues, vector< vector<float> >
&eigenVectorMatrix, int& nrot)

Description

This function calculates the eigenvectors and eigenvalues of the input matrix.

Input parameters

covarianceMatrix is the covariance matrix of the samples of a class.

n is the size of the covariance matrix.

Output parameters:

eigenValues are the eigenvalues of the input covariance matrix.

eigenVectorMatrix is the matrix formed by the eigenvectors of the input
covariance matrix.

nrot represents the number iterations taken by the eigenvector computation
algorithm to converge.

• int loadModelData ()

Description

This method loads the shape models from the model data file.

• Int recognize(constLTKTraceGroup&traceGroupObj,const
TKScreenContext&screenContext, const vector<bool>& shapeSubSet,
float confThreshold, int numChoices , vector<LTKShapeRecoResult>&
results)

Description

This is the recognize method of the PCA classifier.

Input parameters

traceGroupObj is the trace group which is to be recognized

screenContext holds the co-ordinates of the writing area provided for the set of
traces being sent for recognition.

shapeSubSet is a subset of the entire class space which is to be used for
recognizing the input shape.

confThreshold is a threshold on the confidence value of the recognized class.
This is used as rejection criterion.

15

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

numOfChoices is the number of top classes to be returned.

Output Parameters

results contains shapeId and confidence for each of the top classes.

4.4.4 Flow diagrams

The flow of the training and testing modules are depicted below

Training

16

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

For details on training, refer User Manual section 12.

17

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Recognize

For more details on recognition, refer User Manual section 12.

4.4.5 Configuration attributes

The PCA shape recognizer requires project, profile and configuration to be
defined for each project. The project files should be under the project root,
which is a subdirectory of the $LIPI_ROOT/projects directory. For example
consider a project for the recognition of English. The project root could be
$LIPI_ROOT/projects/eng_alpha (PROJROOT), where eng_alpha is the logical name
of the project. The config directory under the PROJROOT contains project.cfg
file, which has project details (shaperec, wordrec etc.) and number of shapes.
Each project can have one or more profiles, one each for different algorithms
used for shape recognition or different configuration parameters used in the
same algorithm. The different profiles are stored as subdirectories under
PROJROOT/config. The settings will be loaded from the profile that is requested
at the time of creation of the shape recognizer. Each profile directory should
contain the profile.cfg file and the configuration files corresponding to the
algorithm used for shape recognition. In order to use the PCA algorithm for
shape recognition the ShapeRecognizer attribute in profile.cfg should be set to pca
and the profile directory should have the pca.cfg file.

18

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Note: The values given against each attribute for pca.cfg are the factory defaults
and to override the defaults, keep only the attributes with values which are
being overridden. If the pca.cfg file is not present, then all the factory defaults
are assumed automatically.

Filename Path Config file attributes

(attribute = value)

Description

project.cfg PROJROOT/co
nfig

ProjectType =
SHAPEREC

This can be SHAPEREC or WORDREC
depending on the input for recognition,
which could be either an isolated
character or a word

 NumShapes = 26 Number of distinct shapes in the shape
set to be recognized

profile.cfg PROJROOT/co
nfig/<profile>

ShapeRecMethod= pca The algoritm to be used for shape
recognition

ReverseFeatureVectors =
false

This flag denotes whether the stroke
direction has to be reversed (in addition
to the normal direction) to find out the
distance to the shape models. [true OR
false]

TraceDimension = 60

The number of points to which the ink
sample

has to be resampled. Generally, it’s value
is set to the average number of points per
character in the data set.

NormalizedSize = 10 The coordinates of the input ink sample
are normalized to this size. [1-10]

SizeThreshold = 0.001

If the width or height is less than this
threshold, ink is not renormalized in that
dimension. This attribute is used only if
the parameter
PreserveAspectRatioThreshold is set to
false

AspectRatioThreshold = 5

This is used during size normalization
<normalizeSize>. Aspect ratio is
preserved if aspect ratio of the ink sample
is above this threshold.

DotThreshold = 0.1

This is used in <normalizeSize>. If the
size of both dimensions are less than this
threshold (in inch) this is normalized to
NormalizedSize/2 value.

NumEigenVectors = 11

This represents the number of
eigenvectors to be used for recognition.
The value of this attribute can vary from a
minimum value of 1 to a maximum value,
which is the size of feature vector.
(2*TraceDimension)

pca.cfg PROJROOT/co
nfig/<profile>

LoopThreshold = 0.25

This is used in the
<normalizeOrientation> function. This
parameter is used to determine whether a
stroke is a loop or not. The range of this

19

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

attribute is [0 - 1].

HookLengthThreshold1 =
0.017

These thresholds are used in dehooking.
A stroke segment is declared as hook, if
length of the stroke is less than threshold
1 OR if the length of the stroke is less
than threshold 2 and angle is less than
AngleThreshold. The Valid range for
HookLengthThreshold1 and
HookLengthThreshold2 is [0 - 1]. The
valid range for HookAngleThreshold is [0-
90] degrees.

HookLengthThreshold2 =
0.13

HookAngleThreshold = 10

SmoothFilterLength = 3

The value of this attribute is the length of
the filter to be used in smoothing the
traces. Valid range of this attribute is [1 -
TraceDimension].

DistanceMeasure =
normal

This attribute is used to specify the
distance function to be used for
calculating the similarity. It can be either
a weighted distance measure or a normal
distance measure. The value this attribute
takes is either normal or weighted.

QuantizationStep = 5

The number of points allocated to each
trace will be a multiple of this attribute.
Value of this attribute <<
TraceDimension.

PreprocSequence={Comm
onPreProc::normalizeSize,
PCA::resampleTraceGrou
p,CommonPreProc::norm
alizeSize}

Sequence of preprocessing

[Note: Refer section 6.1 for more details
on the common preprocessing functions]

PreserveAspectRatioThre
shold=true

[true/false] If set to true the aspect ratio is
preserved , depending on whether the
aspect ratio of the ink sample is greater
than the AspectRatioThreshold value. If
set to false the aspect ratio is not
preserved.

PreserveRelativeYposition
=false

[true/false] If set to true the relative y-
position of the ink sample is preserved.

Source directory hierarchy

20

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

The PCA code is under $LIPI_ROOT/src/reco/shaperec/pca. The directory
$LIPI_ROOT/src/reco/shaperec/common contains the code for common classes
such as LTKShapeRecoResult etc. The directory $LIPI_ROOT/src/reco/
shaperec/preprocessing contains the source for the preprocessing modules.

4.4.6 Build instructions

On Windows

• Make sure that the $LIPI_ROOT environment variable is set to lipitk directory

• Change directory to $LIPI_ROOT/src/reco

• Execute nmake /f Makefile.win pca (this builds all the dependent modules)

On Linux

• Make sure that the $LIPI_ROOT environment variable is set to lipitk directory

• Change directory to $LIPI_ROOT/src/reco directory

• Execute make –f Makefile.linux pca (this builds all the dependent modules)

4.4.7 Required libraries

Static libraries

Libraries required
($LIPI_ROOT/src/lib)
Windows/Linux

Description

utils.lib/libutils.a Utilities to read/write UNIPEN ink, etc.

common.lib/libcommon.a Common data structures to represent and process
the ink

shapereccommon.lib/
libshapereccommon.a Shape recognition specific data structures

DLL/SO

Libraries required
($LIPI_ROOT/lib)
Windows/Linux

Remarks

pca.dll/libpca.so PCA implementation

preproc.dll/libpreproc.so Preprocessing module

lipiengine.dll/liblipiengine.so Interface to the create/delete shape recognizers

4.4.8 Exported functions

21

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• createShapeRecognizer

• deleteShapeRecognizer

• getCurrentVersion

• startLogging

• stopLogging

4.4.9 Support header files
Header File Location Remarks

LTKshapeRecognizer.h $LIPI_ROOT/src/include Defines the shape recognizer
interface

LTKMacros.h $LIPI_ROOT/src/include Defines global macros which are
used across LipiTK

LTKInc.h $LIPI_ROOT/src/include Generic include file which
includes all standard headers

LTKTypes.h $LIPI_ROOT/src/include Defines all the ink specific data
types

LTKTrace.h,
LTKTraceGroup.h

$LIPI_ROOT/src/include Defines ink data types that are
used to store ink info

LTKErrors.h $LIPI_ROOT/src/include Defines all the errors

4.4.10 Compile flags

Linux: None

Windows: Use always “Multithreaded” runtime library option on release builds
and “Debug Multithreaded” runtime library option on debug builds (MT and
MTd)

4.5 DTW module

The DTW module is an implementation of the DTW shape recognition
algorithm. This algorithm implements the 1 nearest neighbor algorithm that uses
DTW distance as a distance measure. The following sections document the
DTW shape recognition module in detail.

LipiEngine reads from the config file and initializes the DTW shape recognition
module. The DTW module has three classes – DTWFeatureExtractor,
DTWShapeModel and DTWShapeRecognizer.

These have been described in detail below:

4.5.1 DTWFeatureExtractor

22

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

This class is used to extract the features from a given character. The class
implements dominant point selection which is a down-sampling technique for
feature selection.

• static int getQuantisedSlope(const Character& character, vector<int>&
qslopeVector)

Description

This static function determines the quantized slopes at the points in the trace
group

Input parameters

character is a vector of x-y coordinates of the ink sample.

Output parameters

qSlopeVector contains the quantized slope values at each point.

• static int determineDominantPoints(const vector<int>&
qSlopeVector,vector<int>& dominantPts,int flexibilityIndex)

Description

This static function determines the dominant points of the trace group from the
quantized slope values based on the value of the flexibility index. Dominant
points are points where the change in slope exceeds the threshold controlled by
flexibility index. Flexibility index takes values 0, 1 and 2 respectively.

Input Parameters

qSlopeVector contains the quantized slope values at each point.

flexibilityIndex takes values 0,1 and 2 respectively and determines the threshold
during dominant point selection. Greater the flexibility index, higher the
threshold, resulting in fewer dominant points.

Output Parameters

dominantPoints contains the indices of the dominant points in the tracegroup.

• static int extractFeatures(const Character& incharacter, int
flexibilityIndex, Character& outcharacter)

Description

This static function takes in the preprocessed trace group and the value of the
flexibility index and returns the extracted dominant points. This function in turn
calls the getQunatisedSlope function and determineDominantPoints function.

Input Parameters

23

deepuv
[b8] IS it not a character

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

incharacter is the in-trace group.

flexibilityIndex takes care of the level of downsampling.

Output Parameters

out character contains the features extracted.

4.5.2 DTWShapeModel

This class represents the model data for recognition. The model data comprises
a set of prototypes for each class. This class has methods to get and set the
shape models.

4.5.3 DTWShapeRecognizer

This class contains the methods that implement a DTW based shape recognizer.
The methods in this class can be categorized into two groups. The first group
contains methods for training and the second for recognition.

Training is performed by taking the training list file as the input, performing
Prototype Selection on the samples of each class, and storing the prototypes in a
model file. Prototype Selection is performed using either of the two techniques
– Accumulative or Hierarchical, and the choice of which of these to be used can
be set in the configuration file. The prototypes of each class resulting from the
clustering techniques form the shape models.

Recognition function predicts the class label of the input sample by finding the
distance of the sample to the classes according to the 1-Nearest Neighbor rule.
DTW distance is used as the distance metric in the 1-Nearest Neighbor
classifier. The top N nearest classes along with confidence measures are
returned in the result data structure.

There are three algorithms to compute the DTW distance between two samples
– DTW, FASTDTW and Keogh Banding. By default the DTW distance is
computed. In order to switch on the use of FASTDTW, the user needs to specify
#define FASTDTW in the common module. Similarly in order to switch on the
Keogh’s Banding technique, the user needs to specify #define KEOGH.

• int train (const string& trainingList, string&
strModelDataHeaderInfoFile, string &comment, string &dataset)

Description

This is the train method of the DTW shape recognizer.

Input parameters

trainingList is the name of the file containing the list of files to be used for
training each of the classes.

24

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

strModelDataHeaderInfoFile is the name of the file containing the list of
attribute value pairs which are going to be part of the model data header.

comment is the string value which contains the general comment on the model
data file.

dataset is a string which contains the name of the dataset used for training.

• int preprocess (const LTKTraceGroup& inTraceGroup,
LTKTraceGroup& outTraceGroup)

Description

This function calls the preprocessing methods in order, as specified in the
preprocessing sequence of the config file (dtw.cfg).

Input parameters

inTraceGroup is the input trace group.

Output parameters

outTraceGroup is the preprocessed trace group.

• int loadModelData ()

Description

This method loads the shape models from the model data file.

• int recognize (const LTKTraceGroup& traceGroupObj, const
LTKScreenContext& screenContext, const vector<bool>& shapeSubSet,
float confThreshold, int numChoices , vector<LTKShapeRecoResult>&
results)

Description

This is the recognize method of the DTW classifier.

Input parameters

traceGroupObj is the trace group which is to be recognized

screenContext holds the co-ordinates of the writing area provided for the set of
traces being sent for recognition.

shapeSubSet is a subset of the entire class space which is to be used for
recognizing the input shape.

confThreshold is a threshold on the confidence value of the recognized class.
This is used as rejection criterion.

25

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

numOfChoices is the number of top classes to be returned.

Output Parameters

results contains shapeId and confidence for each of the top classes.

• int computeDTWDistance(const Character& train, const Character&
test,float bestSoFar, distPointer localDistance, float& distanceDTW)

Description

This function computes the DTW distance between the training prototypes and
the input character.

Input Parameters

train corresponds to the training prototype.character

test corresponds to the input character.

bestSoFar is the stopping criteria for the DTW distance matrix computation,
which is used to terminate the matrix computation when the DTW distance
exceeds a certain threshold.

localDistance function as input to calculate the Euclidean distance between two
points

Output Parameters

DistanceDTW contains the DTW distance between the two characters.

4.5.4 Flow diagrams

The flow of the training and testing modules are depicted below:

26

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Training

For details on training, refer User Manual section 12.

27

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Recognize

For more details on recognition, refer User Manual section 12.

4.5.5 Configuration attributes

The DTW shape recognizer requires project, profile and configuration to be
defined for each project. The project files should be under the project root,
which is a subdirectory of the $LIPI_ROOT/projects directory. For example
consider a project for the recognition of English. The project root could be
$LIPI_ROOT/projects/eng_alpha (PROJROOT), where eng_alpha is the logical name
of the project. The config directory under the PROJROOT contains project.cfg file,
which has project details (shaperec, wordrec etc.) and number of shapes. Each
project can have one or more profiles, one each for different algorithms used for
shape recognition or different configuration parameters used in the same
algorithm. The different profiles are stored as subdirectories under
PROJROOT/config. The settings will be loaded from the profile that is requested
at the time of creation of the shape recognizer. Each profile directory should
contain profile.cfg file and the configuration files corresponding to the algorithm
used for shape recognition. In order to use the DTW algorithm for shape
recognition the ShapeRecognizer attribute in profile.cfg should be set to dtw and
the profile directory should have the dtw.cfg file.

28

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Note: The values given against each attribute for dtw.cfg are the factory defaults
and to override the defaults, keep only the attributes with values which are
being overridden. If the dtw.cfg file is not present, then all the factory defaults
are assumed.

Filename Path Config file attributes

(attribute = value)

Description

Project Type = SHAPEREC This can be SHAPEREC or WORDREC
depending on the input for recognition,
which could be either an isolated character
or a word

project.cfg PROJROOT/
config

NumShapes = 26 Number of distinct shapes in the shape set
to be recognized. If this parameter is set
to “dynamic” the NumShapes can be
variable. This Feature is useful if dynamic
addition/deletion of shapes happen.
However, the shape recognizer will not
verify number of shapes across the
training and recognition phases.

profile.cfg PROJROOT/
config/<profil
e>

ShapeRecMethod = dtw The algorithm to be used for shape
recognition

ReverseFeatureVectors =
false

This flag denotes whether the stroke
direction has to be reversed (in addition to
the normal direction) to find out the
distance to the shape models. [true or
false]

TraceDimension = 60 The number of points to which the ink
sample has to be resampled. Generally, its
value is set to the average number of
points per character in the data set.

NormalizedSize = 10 The coordinates of the input ink sample
are normalized to this size. [1-10]

SizeThreshold = 0.001 If the width or height is less than this
threshold, ink is not renormalized in that
dimension. This attribute is used only if the
parameter PreserveAspectRatioThreshold
is set to false

AspectRatioThreshold = 5 This is used during size normalization
<normalizeSize>. Aspect ratio is preserved
if aspect ratio of the ink sample is above
this threshold.

DotThreshold = 0.1 This is used in <normalizeSize>. If the size
of both dimensions are less than this
threshold (in inch) this is normalized to
NormalizedSize/2 value.

FlexibilityIndex = 0 Flexibility index at which the points are to
be matched [0, 1, 2]. Flexibility Index = 0
correspond to considering all the points.

PrototypeSelection=accumul
ative

Protoype selection method. Values are
[accumulative or clustering]

dtw.cfg PROJROOT/
config/<profil
e>

Banding=40 Banding radius for DTW Computation

29

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

PrototypeReductionFactor =
automatic

This config parameter is used only when
the prototype selection is clustering

[automatic | none | 1-100]

The default value of this parameter is
automatic

When the value of this config parameter is
set to automatic number of clusters is
determined automatically

Set it to none if no prototype selection is
required

If the value of this parameter is set to a
number between 1-100 say 25, then
75% (i.e 100-25) of the initial training data
are retained as prototypes

Numfeatures=2 Number of features <currently x and y
features>

PreprocSequence={Commo
nPreProc::normalizeSize,DT
W::resampleTraceGroup1,C
ommonPreProc::normalizeSi
ze

Sequence of preprocessing

[Note: Refer section 6.1 for more details
on the common preprocessing functions]

PreserveAspectRatioThresh
old=true

[true/false] If set to true the aspect ratio is
preserved , depending on whether the
aspect ratio of the ink sample is greater
than the AspectRatioThreshold value. If
set to false the aspect ratio is not
preserved.

Default value of this parameter is true

PreserveRelativeYposition=f
alse

[true/false] If set to true the relative y-
position of the ink sample is preserved.

This parameter is set to false by default

DTWEuclideanFilter = all

This config parameter is used to set the
number of nearest meighbours to be
considered for calculating dtw [all|1-N] all
implies do not use the filter and pass all
samples for the dtw computation. Any
number k(1 < k < N, N is the size of
prototype set) will use Euclidean filter and
pass k samples to the DTW computation

4.5.6 Source directory hierarchy

The DTW code is under $LIPI_ROOT/src/reco/shaperec/dtw. The directory
common under $LIPI_ROOT/src/reco/shaperec directory contains the code for
common classes such as LTKShapeRecoResult etc. The directory preprocessing
under $LIPI_ROOT/src/reco/shaperec directory contains the source for the
preprocessing modules.

30

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

4.5.7 Build instructions

On Windows

• Make sure that the $LIPI_ROOT environment variable is set to lipitk directory

• Change directory to $LIPI_ROOT/src/reco

• Execute nmake /f Makefile.win dtw (this builds all the dependent modules)

On Linux

• Make sure that the $LIPI_ROOT environment variable is set to lipitk
directory

• Change directory to $LIPI_ROOT/src/reco directory

• Execute make –f Makefile.linux dtw (this builds all the dependent modules)

4.5.8 Required Libraries

Static libraries

Libraries required

($LIPI_ROOT/src/lib)

Windows/Linux

Description

utils.lib/libutils.a Utilities to read/write UNIPEN ink, etc.

common.lib/libcommon.a Common data structures to represent and process the
ink

shapereccommon.lib/

libshapereccommon.a

Shape recognition specific data structures

DLL/SO

Libraries required

($LIPI_ROOT/lib)

Windows/Linux

Remarks

dtw.dll/libdtw.so DTW implementation

preproc.dll/libpreproc.so Preprocessing module

lipiengine.dll/liblipiengine.so Interface to the create/delete shape recognizers

4.5.9 Exported functions

31

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• createShapeRecognizer

• deleteShapeRecognizer

• getCurrentVersion

• startLogging

• stopLogging

4.5.10 Support header files
Header File Location Remarks

LTKshapeRecognizer.h $LIPI_ROOT/src/include Defines the shape recognizer
interface

LTKMacros.h $LIPI_ROOT/src/include Defines global macros which are
used across LipiTK

LTKInc.h $$LIPI_ROOT/src/include Generic include file which
includes all standard headers

LTKTypes.h $$LIPI_ROOT/src/include Defines all the ink specific data
types

LTKTrace.h,
LTKTraceGroup.h

$$LIPI_ROOT/src/include Defines ink data types that are
used to store ink info

LTKErrors.h $LIPI_ROOT/src/include Defines all the errors

4.5.11 Compile flags

Linux: None

Windows: Use always “Multithreaded” runtime library option on release builds
and “Debug Multithreaded” runtime library option on debug builds (MT and
MTd)

4.6 Word Recognition Interface

LipiTk provides a standard set of interfaces for all the word recognition
modules. This allows the user to dynamically configure and use any new word
recognition module at run-time. This section describes the word recognition
interface in detail.

The class LTKWordRecognizer defines the standard interface. The header file
can be found under $LIPI_ROOT/src/include/ LTKWordRecognizer.h. Any new word
recognition module that you create should derive this interface and implement
all the functions.

The method that needs to be implemented by any new word recognition module
is given below:

32

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

• int initialize((string& strProjectName, string &strProfileName)

Description

This method initializes the word recognizer. It initializes the members and loads
the model data.

Input parameters

strProjectName contains the project name and strProfileName contains the
profile name of the project.

Return values

0 if successful and other value if unsuccessful.

• int processInk (LTKRecognitionContext& rc)

Description

This method is called from recognition context whenever new traces are added
to it. The recognizer needs to process the new traces in this method and update
the internal state.

Input parameters

 rc is the reference of the recognition context that contains the new traces.

Return values

 0 if successful and other value if unsuccessful.

• int endRecoUnit()

Description

This function is called from the recognition context to notify the end of logical
segment in the input stream. This information could be used in constraining the
recognizer choices.

Input parameters

None

Return values

0 if successful and other value if unsuccessful.

• int recognize (LTKRecognitionContext& rc)

Description

33

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

The recognition results are updated in the recognition context after this call.

Input parameters

rc contains the recognition context for the current recognition

Return values

0 if successful and other value if unsuccessful.

• int reset (int resetParam = 0)

Description

This method reset the recognizer.

Input parameters

By default it is 0 and it is used to reset.

Return values

 0 if successful and other value if unsuccessful.

• int unloadModelData()

Description

This method unloads all the model data. Call initialize to re-initialize the word
recognizer.

Input parameters

None

Return values

0 if successful and other value if unsuccessful.

• int getLastError ()

Description

This method is called by the client application to get the last error that occurred
during any operation within the word recognizer module.

Input parameters

None

Return values

Error code [Refer section 5 for more details on error codes].

4.7 Word recognition module
The word recognition module contains algorithms for word level recognition.
The module consists of a Word Recognition Interface (LTKWordRecognizer), a

34

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Recognition Context (LTKRecognitionContext) and a Boxed-field recognizer
(BoxFieldRecognizer).

The application sets the context of recognition (such as device parameters or UI
information) and input ink to be recognized in a recognition context object. The
recognition context object invokes a word recognizer (e.g. Boxed-field
recognizer) for recognition.

4.7.1 LTKRecognitionContext
This class holds the ink for recognition, context information such as UI and
device parameters, language models and the results of recognition. The object
exposes methods for adding ink, setting the UI and device parameters, retrieval
of results etc. The client application creates and maintains different recognition
context objects for different fields (numerals, alpha etc). The main methods in
LTKRecognitionContext are listed below:
• int setWordRecoEngine(LTKWordRecognizer *wordReco)
This method sets the pointer to the word recognizer to be used in the
recognition context. The recognition context invokes word recognizer methods
via this pointer
• int addTrace (const LTKTrace& trace)

• int addTraceGroup (const LTKTraceGroupVector& fieldInk)
These methods are used to add digital ink in the recognition context.
trace is a single trace to be added to the recognition context
fieldInk is a vector of LTKTraceGroup objects.
These methods call processInk method of the recognizer.
• const LTKTraceVector& getAllInk () const
This method returns a reference to the stored ink data in the recognition context.
• int beginRecoUnit ()

• int endRecoUnit ()
These methods mark begin and end of logical segments in the input stream.
An empty stroke added between the beginRecoUnit and endRecoUnit will insert
a space in the output string.
• int recognize ()
The client application calls this method for recognition. This in turn calls the
word recognizer’s recognize method.
• int reset (int resetParam)
 This function resets different components of the recognition context. The reset
parameter can have following values

35

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Value Description

LTK_RST_INK Clear all the Ink in the recognition context

LTK_RST_RECOGNIZER Calls reset method of the word recognizer

LTK_RST_ALL Clear the Ink and calls the reset method of the
word recognizer

• int clearRecognitionResult ()
This method clears all the ink, recognition results stored in the recognition
context. Also calls the reset method of the recognizer.
• int setDeviceContext (const LTKCaptureDevice& dc)

• const LTKCaptureDevice& getDeviceContext () const
Methods to set/get the device parameters. The application needs to set the
following parameters in the capture device structure:

• sampling rate (points per second)
• horizontal and vertical resolution (dots per inch)
• latency time (ms)
• flag denoting whether the device sampling is uniform

• int setScreenContext (const LTKScreenContext& sc)

• const LTKScreenContext& getScreenContext () const
Methods to set/get user interface parameters. The screen context structure
contains bounding box information and a list of horizontal and vertical lines.
• int setFlag(string key, int value)

• int getFlag(string key)
These methods set/get flags for recognition in the recognition context.

For boxed-field recognition the flags are:

36

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Key Values and description

REC_UNIT_INFO This flag specifies the interpretation of each logical segment.
ifferent possible values are D

REC_UNIT_UNKNOWN No segmentation information
available

REC_UNIT_SYMBOL Symbol level segmentation
available

REC_UNIT_CHAR Character level segmentation
available

REC_UNIT_WORD Word level segmentation
available

REC_MODE This flag specifies the recognition mode

REC_MODE_BATCH All ink is updated in the recognition
context before recognition

REC_MODE_STREAMING Streaming mode recognition. The
ink is added as collected from the
UI

• int addRecognitionResult (const LTKWordRecoResult& result)

This method called by the word recognizer sets the results in the recognition
context.

result contains vector of Unicode ids corresponding to the result word and
associated word confidence.

• int getTopResult (LTKWordRecoResult& result)

• int getNextBestResults (int numResults, LTKWordRecoResultVector&
results)

These methods are called by the application to retrieve results from the
recognition context. The LTKWordRecoResult structure contains the result
word with associated confidence value. The parameter numResults denotes the
maximum number of results to be retrieved.

• int setNumResults (int numResults)

• int getNumResults () const

These methods set/get the number of results required from the word recognition
shape recognizer.

• int setConfidThreshold (float thresh)

• float getConfidThreshold () const;

These methods set/get the confidence threshold for word recognition.

37

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

4.7.2 BoxedFieldRecognizer

Boxed-field recognizer (BoxedFieldRecognizer class) implements the word recognizer
interface and performs word recognition when character level segmentation is available.
The word recognizer invokes a trained shape recognition module such as PCA or DTW for
recognizing individual characters. The shape recognizer returns multiple recognition
choices for each character. A trellis is constructed with the recognition alternatives and a
Dynamic Programming (DP) search is performed to identify the best possible paths. These
choices are converted to Unicode ids and returned to the application. This module has the
following methods.

• int initialize (string& projectName, string& profileName)

This function loads all configuration parameters and creates the shape
recognizer object.

• int processInk (LTKRecognitionContext& rc)

The Ink in the recognition context is sent for recognition if a character is
completed and the recognition flag is set to streaming.

• int recognize (LTKRecognitionContext& rc)

results are updated in the recognition context object (rc) after this call.

• Int updateRecognitionResults (const vector<LTKShapeRecoResult>&
results, LTKRecognitionContext& rc)

This method updates the word recognition result with new shape recognition
choices (results). rc is the recognition context.

• int reset (int resetParam)

This method reset the recognizer.resetParam is not used currently.

• int unloadModelData()

This method unloads all the model data.of of the shape recognizer Call initialize
API to re-initialize the recognizer.

• int LTKStrEncoding::shapeStrToUnicode(const string
shapeRecProjectName, const vector<unsigned short>&shapeIDs,
vector<unsigned short>& unicodeString)

The mapping of shape ids to Unicode is performed in the LTKStrEncoding class
in $LIPI_ROOT/src/utils. This static function shapeStrToUnicode maps the string
of shape recognizer IDs to Unicode depending on the project name. An
example mapping is present for Tamil characters. The user needs to modify
LTKStrEncoding::shapeStrToUnicode(…) and add his own mapping for
conversion to Unicode.

4.7.3 Flow diagrams

38

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

The general flow of a word recognition application will be as follows:

Create and initialize
Boxed-field
recognizer

Create and initialize
recognition context

Add strokes to
recognition context

Call recognize of
recognition context

Retrieve results
from recognition

context

boxfld.
cfg

39

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

4.7.4 Sequence Diagrams

Set up the recognition context

This involves setting up the recognition context with proper device parameters, UI
information etc.

Adding ink to recognition context

Application adds Ink to be recognized to the recognition context. The application needs to
call beginRecoUnit (endRecoUnit) before (after) adding the group of ink corresponding to
one character.

40

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Application LTKRecognitionContext

beginRecoUnit

addTrace

addTrace

BoxedFieldRecognizer

processInk (streaming mode)

processInk(streaming mode)

Ink
correspo
nding to

one
logical

segment

endRecoUnit

41

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Recognize

Application LTKRecognitionContext BoxedFieldRecognizer ShapeRecognizer(PCA/DTW)

recognize

recognize

recognize

updateRecognitionResults

For each
character

shapeStrToUnicode

addRecognitionResult

Message1

42

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

4.7.5 Configuration Attributes

The word recognizer requires project, profile and configuration to be defined for each
project. The project files should be under the project root, which is a subdirectory of the
$LIPI_ROOT/projects directory. For example consider a project for the recognition of
English. The project root could be $LIPI_ROOT/projects/eng_alpha (PROJROOT), where
eng_alpha is the logical name of the project. The config directory under the PROJROOT
contains project.cfg file, which has project type (WORDREC) and a logical name. Each
project can have one or more profiles, one each for different algorithms used for shape
recognition or different configuration parameters used in the same algorithm. The different
profiles are stored as subdirectories under PROJROOT/config. The settings will be loaded
from the profile that is requested at the time of creation of the word recognizer. Each
profile directory should contain profile.cfg file and the configuration files corresponding to
the algorithm used for word recognition. In order to use the Boxed-field recognition
algorithm for word recognition the WordRecognizer attribute in profile.cfg should be set to
boxfld and the profile directory should have the boxfld.cfg file.

Filename Path
Config file attributes

(attribute = value)
Description

ProjectType =
WORDREC

This project is used to recognize words project.cfg PROJROOT/co
nfig

ProjectName= "English
boxed-field recognizer"

This is the logical name of the project

WordRecognizer = boxfld The Boxed-field recognizer is used profile.cfg PROJROOT/co
nfig/<profile>

RequiredProjects =
eng_char(default)

This project uses data from the project
eng_char with default profile

BoxedShapeProject =
numerals

BoxedShapeProfile
 = default

The Boxed-field recognizer use this
project and profile configuration for shape
recognition

NumSymbols = 26 Size of character set for the shape
recognition project

MinShapeConfid = 0 Threshold for shape recognition result
confidence

boxfld.cfg PROJROOT/co
nfig/<profile>

NumShapeChoices = 3
Number of shape recognizer results
requested

4.7.6 Source Directory Hierarchy

The BoxedFieldRecognizer code is under $LIPI_ROOT/src/reco/wordrec/boxfld. The
directory $LIPI_ROOT/src/reco/wordrec/common contains the code for common classes
such as LTKRecognitionContext, LTKWordRecoResult etc.

4.7.7 Build instructions

43

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

On Windows

• Make sure that the $LIPI_ROOT environment variable is set to lipitk directory
• Change directory to $LIPI_ROOT/src/reco
• Execute nmake /f Makefile.win boxfld (this builds all the dependent modules)

On Linux

• Make sure that the $LIPI_ROOT environment variable is set to lipitk directory
• Change directory to $LIPI_ROOT/src/reco directory
• Execute make –f Makefile.linux boxfld (this builds all the dependent modules)

4.7.8 Exported Functions
• createWordRecognizer
• deleteWordRecognizer
• getCurrentVersion
• startLogging
• stopLogging

4.7.9 Required Libraries

Static libraries

Libraries required

($LIPI_ROOT/src/lib)

Windows/Linux

Description

utils.lib/libutils.a Utilities to read/write UNIPEN ink, etc.

common.lib/libcommon.a Common data structures to represent and process the ink

shapereccommon.lib/

libshapereccommon.a

Shape recognition specific data structures

wordrecocommon.lib/

libwordrecocommon.a

Word recognition specific data structures

DLL/SO

Libraries required

($LIPI_ROOT/lib)

Windows/Linux

Remarks

boxfld.dll/libboxfld.so Boxed-field recognizer
implementation

lipiengine.dll/liblipiengine.so Interface to the create/delete word
recognizers

Shaperecognizer dll For shape recognition

44

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

4.7.10 Support header files
Header file Location Remarks

LTKWordRecognizer.h $LIPI_ROOT/src/include Defines the word
recognition interface

LTKshapeRecognizer.h $LIPI_ROOT/src/include Defines the shape
recognizer interface

LTKMacros.h $LIPI_ROOT/src/include Defines global macros
which are used across
LipiTk

LTKInc.h $LIPI_ROOT/src/include Generic include file which
includes all the standard
include headers

LTKTypes.h $LIPI_ROOT/src/include Defines all the LipiTk
specific data types

LTKTrace.h,
LTKTraceGroup.h

$LIPI_ROOT/src/include Defines ink data types that
are used to store ink info

LTKErrorList.h Define all the error macros
used in LipiTk

4.7.11 Compile Flags

Linux: None

Windows: Use always “Multithreaded” runtime library option on release builds and
“Debug Multithreaded” runtime library option on debug builds (MT and MTd)

5 LipiTk 1.0 errors and descriptions

To handle errors from various modules in LipiTk, all the errors are defined in a
single place and all the modules return with that error code. At anytime the user
can get the last error that occurred in a module by calling getLastError method,
which is implemented by all the modules in LipiTk.

All the error codes are defined in $LIPI_ROOT/src/include/LTKErrorsList.h. All the
strings corresponding to these error codes are defined in
$LIPI_ROOT/src/util/lib/LTKErrors.cpp. To add or update any error code, refer to the
above files and add or update as required.

Use the macro LTKReturnError to return any error from any function in any
module, which is defined under $LIPI_ROOT/src/include/LTKInc.h

Error
Code

Name Definitions

100 EINK_FILE_OPEN Unable to open ink file. Look at the Log file
for more info

101 ECONFIG_FILE_OPEN Unable to open configuration file. Look at the
Log file for more info

45

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

102 EHEADER_INFO_FILE_OPEN Unable to open model header information file

103 EMODEL_DATA_FILE_OPEN Unable to open model data file. Look at the
Log file for more info

104 ETRAINLIST_FILE_OPEN Unable to open train list file. Look at the Log
file for more info

105 EMODEL_DATA_FILE_FORMAT Incompatible model data file. The header is
not in the desired format. Look at the Log file
for more info

106 EMODEL_DATA_FILE_CORRUPT Model data file is corrupted. Look at the Log
file for more info

107 ELOAD_SHAPEREC_DLL Error while loading shape recognition module

108 ELOAD_WORDREC_DLL Error while loading word recognition module

109 ELOAD_PREPROC_DLL Error while loading preprocessing module

110 EDLL_FUNC_ADDRESS Exported function not found in module. Look
at the Log file for more info

111 ECREATE_SHAPEREC Error while creating shape recognizer
instance

112 ECREATE_WORDREC Error while creating word recognizer instance

113 ECREATE_PREPROC Error while creating preprocessor instance

114 ELIPI_ROOT_PATH_NOT_SET Environment variable $LIPI_ROOT is not set

115 EINVALID_PROJECT_NAME Invalid or no entry for project name

116 EINVALID_CONFIG_ENTRY Invalid configuration entry in project.cfg file

117 ENO_SHAPE_RECOGNIZER No shape recognizer specified in profile.cfg
file

118 ENO_WORD_RECOGNIZER No word recognizer specified in profile.cfg
file

119 EINVALID_NUM_OF_TRACES Invalid number of traces processed. Look at
the Log file for more info

120 EINVALID_NUM_OF_SHAPES Invalid value for number of shapes. Look at
the Log file for more info

121 EINVALID_TRACE_DIMENTION Invalid value for trace dimension. Look at the
Log file for more info

122 EINVALID_NUMEIGENVECTOR Invalid value for eigen vector. Look at the
Log file for more info

123 EINVALID_FLOAT_SIZE Invalid float size entry in model data File.
Look at the Log file for more info

124 EINCOMPATIBLE_VERSION Incompatible algorithm version. Look at the
Log file for more info

125 EINVALID_PREPROC_SEQUENCE Wrong preprocessor sequence entry in cfg
file. Look at the Log file for more info

126 EINVALID_PROJECT_NAME Invalid or no value specified for project name
for recognizer

46

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

127 EINVALID_LOGICAL_NAME Invalid or no value specified for logical name
for recognizer

128 EINVALID_SEGMENT Invalid segment, boxed-field recognizer
requires character level segment info

129 EINVALID_REC_MODE Unsupported recognizer mode

130 EUNSUPPORTED_STATISTICS Unsupported or invalid statistics to be
computed

131 EMAP_NOT_FOUND No function implemented to convert to a
Unicode string

132 EINVALID_SHAPEID Invalid value for shape id

133 ENOMAPFOUND_LIPIENGINECFG Cannot map the logical name, no entries in
lipiengine.cfg

134 EINVALID_NUM_OF_POINTS Number of points in the tracegroup is not
normalized

135 EEMPTY_TRACE Empty trace

136 EEMPTY_TRACE_GROUP Empty TraceGroup

137 ECONFIG_FILE_RANGE The config file variable is not within the
correct range

138 EINITSHAPE_NONZERO Initial shape id is not zero

139 EINVALID_LINE_LISTFILE Invalid line in the listfile (train or test)

140 EINVALID_ORDER_LISTFILE Invalid order of shape-ids in the list file (train
)

141 ENUM_NNS Invalid number of nearest neighbors
specified

142 EINKFILE_EMPTY Ink file name is empty

143 EINKFILE_CORRUPTED Incorrect or corrupted Unipen ink file.

Logging error messages

Whenever the error is encountered in the application the error will be logged
into the log file. For logging the error messages the user has to supply the log
file name to the application.

6 Using LipiTk – A walk through

(On Windows by combining the results of existing shape recognizers PCA and
DTW)

6.1 Writing a new shape recognizer module ABC

1 Installation

Follow the download instructions and unpack the sources.

47

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

(Refer User Manual Section 8)

2 Setup

A. Set environment variable LIPI_ROOT to the directory where the
sources are unpacked.

B. Make a new profile under PROJROOT/config/abc.

C. Create PROJROOT/config/abc/project.cfg and add the following:
ProjectType = SHAPEREC NumShapes=26

D. Create PROJROOT/config/abc/profile.cfg and add the following:
ShapeRecMethod = abc

E. Copy pca.cfg from $LIPI_ROOT/src/reco/shaperec/pca/pca.cfg to
PROJROOT/config/abc and copy dtw.cfg from
$LIPI_ROOT/src/reco/shaperec/dtw/dtw.cfg to PROJROOT/config/abc

3 Creating the new shape recognizer module

A. Create a new directory under $LIPI_ROOT/src/reco/shaprec/abc.

B. Copy the contents of the folder $LIPI_ROOT/src/reco/shaperec/tst to
$LIPI_ROOT/src/reco/shaprec/abc.

C. Replace the prefix EXP by ABC in all the files and filenames. So the
name of new shape recognizer class would be ABCShapeRecognizer.

D. Modify the makefile and change the final executable/binary name to
“abc” (abc.dll on Windows and libabc.so on Linux)

E. Add the code to “initialize” function of ABC

a. Load pca.dll and dtw.dll

b. Create an object of pca and dtw using createShapeRecognizer method
in the above mentioned dlls

c. Invoke the initialize function of both PCA and DTW modules by just
passing the values of ABC’s initialize function parameters

F. Modify the train function of ABC recognizer

a. Call train method of pca and dtw shape recognizers

G. Modify the loadModelData function of ABC recognizer

b. Call loadModelData method of pca and dtw shape recognizers

H. Modify the recognize function of ABC recognizer

48

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

a. Call recognize method of pca and dtw shape recognizers

b. Add code for combining results of PCA and DTW shape recognizers.
(This will combine the set of results from pca and dtw and determine
the final results)

c. Return the combined results

I. Tunable parameters required for the combination scheme should go
into abc.cfg config file under the PROJROOT/config/abc

Tip: The contents of the abc.cfg can be read into a map using the utility function
“ConfigFileReader::getMap(<config file name>)” in
$LIPI_ROOT/src/util/lib/ConfigFileReader.cpp

4 Build

Open the makefile under $LIPI_ROOT/src/reco folder. Add a dependency for abc
to pca and dtw. Run make to compile all the binaries.

5 Package for deployment

A. cd $LIPI_ROOT/package

B. Create package.cfg as follows:

[package]

Projects = english_alpha(default), english_alpha(special),english_alpha(abc)

Src = apps/samples/shaperectst

[export]

ENGLISH_ALPHA_COMBINED = English_alpha(abc)

C. $LIPI_ROOT/scripts/package.pl -pkg package.cfg -pkgname Eng_alpha_reco

Find the package created under $LIPI_ROOT/package directory.

6.2 Adding new preprocessing methods and the configuration

Assumptions

The shape recognizer for English alphabets using PCA module is installed and
available.

PROJROOT = $LIPI_ROOT/projects/English_alpha

DATAROOT = PROJROOT/data (or) $LIPI_ROOT/data/English

The new preprocessing function which will be added is “newPreprocFunc”.

49

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

1 Adding a new preprocessing function

A. Define the new method newPreprocFunc in $LIPI_ROOT/src/include/
LTKPreprocessorInterface.h.

Note: the function signature should follow the following convention:

virtual int newPreprocFunc (const LTKTraceGroup& inTraceGroup,
LTKTraceGroup& outTraceGroup) = 0;

B. Add the implementation declaration in $LIPI_ROOT/src/include/
LTKPreprocessor.h as follows:

int newPreprocFunc (const LTKTraceGroup& inTraceGroup,
LTKTraceGroup& outTraceGroup);

C. Implement the function and add the functionality in the source file
under

$LIPI_ROOT/src/reco/shaperec/preprocessing/ LTKPreprocessor.cpp

2 Configuring the preprocessing sequence

The user can configure or change the preprocessing sequence by specifying the
sequence in configuration file.

For example incase of the “English alpha” shape recognizer, the configuration
file will be under $LIPI_ROOT/projects/English_alpha/config/default/pca.cfg

The contents of PCA.cfg will have an entry:

PreprocSequence={CommonPreProc::normalizeSize,PCA::resampleTraceGroup,Comm
onPreProc::normalizeSize}

Since the newly added function “newPreprocFunc” is available in common
preprocessing module, we can configure this as follows:

PreprocSequence={CommonPreProc::normalizeSize,CommonPreProc::
newPreprocFunc, PCA::resampleTraceGroup,CommonPreProc::normalizeSize}

7 Appendix

This appendix provides information on how to use Doxygen for detailed source
documentation.

7.1 Using doxygen to generate detailed source documentation

Doxygen is an on-line documentation browser (in HTML) from a set of
documented source files. You can generate the documentation from the LipiTk
source using this tool by following the steps given below.

50

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

This tool can be downloaded from the following link (source and binary)
http://www.stack.nl/~dimitri/doxygen/download.html

Refer to http://www.stack.nl/~dimitri/doxygen/install.html for installation and
 configuration instructions.

Usage:

1 Generate configuration file as follows:

doxygen -g <configName>

2 Modify the following attributes

PROJECT_NAME = "LipiTk"

PROJECT_NUMBER = Version 1.0.0

OUTPUT_DIRECTORY = htmldoc/

USE_WINDOWS_ENCODING = YES

EXTRACT_ALL= YES

EXTRACT_PRIVATE= YES

MULTILINE_CPP_IS_BRIEF = YES

INPUT= .

RECURSIVE= YES

EXAMPLE_RECURSIVE= YES

SOURCE_BROWSER= YES

INLINE_SOURCES= YES

ALPHABETICAL_INDEX= YES

GENERATE_HTML= YES

HTML_OUTPUT= .

GENERATE_TREEVIEW= YES

HAVE_DOT= YES

TEMPLATE_RELATIONS= YES

CALL_GRAPH= YES

DOT_CLEANUP= YES

GENERATE_LATEX= YES

51

http://www.stack.nl/~dimitri/doxygen/download.html
http://www.stack.nl/~dimitri/doxygen/install.html

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

3 Generate documentation using an existing configuration file

doxygen <configName>

Refer the following link for downloading additional required graphs and
diagram tools:

http://www.stack.nl/~dimitri/doxygen/diagrams.html

7.2 References

Deepu V. and Sriganesh M. (2004). Deepu V. and Sriganesh Madhvanath.
Principal Component Analysis for Online Handwritten Character Recognition.
In Proc. 17th International Conference on Pattern Recognition(ICPR ´ 04),
pages 327.330, Cambridge, UK, August 2004.

Niranjan J. (2004). Niranjan Joshi, G. Sita, A. G. Ramakrishnan and Sriganesh
Madhvanath. Comparison of Elastic Matching Shape recognizers for Online
Tamil Handwritten Character Recognition. In Proc. Ninth International
Workshop on Frontiers in Handwriting Recognition(IWFHR ´ 04), pages 444-
449, Tokyo, Japan, October 2004

Raghavendra B. S. (2005). Raghavendra B.S., Narayanan C.K., Sita G.,
Ramakrishnan A.G. and Sriganesh Madhvanath. Prototype Learning Methods
for Online Handwriting Recognition. In Proc. Eighth International Conference
on Document Analysis and Recognition (ICDAR 2005), Seoul, Korea, October
2005.

7.3 Glossary
Project LipiTk parlance for a grouping of recognizer configurations, targeted at a particular

shape or word recognition problem.

Profile Specific set of configuration files associated with, and generally addressing a specific
aspect of, a particular Project. Specific Profiles of the same Project may be created
for specific writers, specific datasets, and so forth.

LipiTk Lipi Toolkit

DTW Dynamic Time Warping – An algorithm for matching shapes; also the identifier of a
shape recognition algorithm provided with LipiTk 1.0

PCA Principal Component Analysis – a form of statistical data analysis involving the
extraction of Principal Components from the data; also the identifier of a shape
recognition algorithm provided with LipiTk 1.0

DAT Data Annotation Tool – A tool for annotation of handwriting data shipped with LipiTk
1.0

DCT Data Collection Tool – A tool for collection of handwriting data shipped with LipiTk 1.0

HWR Hand-Writing Recognition

DLL Dynamic Link Library - On Windows platforms, a library linked dynamically as needed

SO Shared Object (Linux) - On Linux platforms, a library linked dynamically as needed

52

http://www.stack.nl/~dimitri/doxygen/diagrams.html

LIPI TOOLKIT 1.1

HP Labs, India REFERENCE MANUAL

Stroke The sequence of pen points between two consecutive pen events, pen down and pen

up

Tar A file compression format and utility generally found on UNIX platforms; the act of
compression a file using this utility

Untar A utility for uncompressing files compressed using tar, generally found on UNIX
platforms; the act of uncompressing a tar’d file using this utility

tarball or tar file A file in the tar format, generally a compressed collection of files

UNIPEN 1.0 A standard format from the International Unipen Foundation (www.unipen.org) to
store on-line handwriting data (as digital ink) and its annotations.

53

http://www.unipen.org/

	Introduction
	Supported platforms and environment
	Overview and architecture
	Module documentation
	Lipi engine module
	Common preprocessor module
	Shape recognition interface
	PCA module
	PCAFeatureExtractor
	PCAShapeModel
	PCAShapeRecognizer
	Flow diagrams
	Configuration attributes
	Build instructions
	Required libraries
	Exported functions
	Support header files
	Compile flags

	DTW module
	DTWFeatureExtractor
	DTWShapeModel
	DTWShapeRecognizer
	Flow diagrams
	Configuration attributes
	Source directory hierarchy
	Build instructions
	Required Libraries
	Exported functions
	Support header files
	Compile flags

	Word Recognition Interface
	Word recognition module
	LTKRecognitionContext
	BoxedFieldRecognizer
	Flow diagrams
	Sequence Diagrams
	Configuration Attributes
	Source Directory Hierarchy
	Build instructions
	Exported Functions
	Required Libraries
	Support header files
	Compile Flags

	LipiTk 1.0 errors and descriptions
	Using LipiTk – A walk through
	Writing a new shape recognizer module ABC
	Adding new preprocessing methods and the configuration

	Appendix
	Using doxygen to generate detailed source documentation
	References
	Glossary

